Skip to main content

Advertisement

Log in

CD73+ adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Adipose-derived mesenchymal stem cells (ADMSCs) are an attractive adult-derived stem cell population for cardiovascular repair. ADMSCs are heterogeneous cell populations with pluripotent capacity to differentiate into different types of cells. In the present study, we investigated the biological characteristics and differentiation potential of CD73-positive (CD73+) and CD73-negative (CD73) ADMSCs. Our results show that in terms of morphological shape, CD73+-ADMSCs are mainly small-sized cells, whereas CD73-ADMSCs are big-sized cells; both subpopulations can equally differentiate into adipocytes and osteoblasts in vitro. However, the CD73+-ADMSCs possess a higher potential to differentiate into cardiomyocytes than the CD73-ADMSCs. The expression of the cardiac-specific genes, cTnT, Gata4, and Nkx2.5, is much higher in the CD73+-ADMSCs than in the CD73-ADMSCs. Furthermore, Nanog expression at both the mRNA and protein levels is significantly higher in CD73+-ADMSCs than in CD73-ADMSCs, suggesting that CD73+-ADMSCs are an undifferentiated subpopulation that can differentiate into cardiomyocytes in vitro more efficiently. Therefore, this study facilitates a better understanding of the differentiation of the ADMSCs subgroups and attempts to identify if CD73 is a useful marker for sorting and purifying the subpopulation of ADMSCs with a higher capacity for differentiation into cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal stem cells

ADMSCs:

Adipose-derived mesenchymal stem cells

RS cells:

Rapidly self-renewing cells

SS cells:

Elongated, fibroblastic-like, spindle-shaped cells

FC cells:

Slowly replicating, large, cuboidal or flattened cells

ISCT:

International Society of Cellular Therapy

5-aza:

5-Azacytidine

cTnT:

Cardiac troponin-T

α-actin:

Cardiac actin

Gata4:

Gata binding protein 4

Nkx2.5:

Nk2 homeobox 5

Cx43:

Connexin-43

Ost:

Osteo-testicular protein

Runx2:

Runt-related transcription factor 2

References

  • Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Papakonstantinou C (2007) In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact Cardiovasc Thorac Surg 6:593–597

    Article  PubMed  Google Scholar 

  • Boiret N, Rapatel C, Veyrat-Masson R, Guillouard L, Guerin JJ, Pigeon P, Descamps S, Boisgard S, Berger MG (2005) Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol 33:219–225

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  PubMed  CAS  Google Scholar 

  • Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98:7841–7845

    Article  PubMed  CAS  Google Scholar 

  • Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, Rosset P, Sensebe L, Layrolle P, Haupl T, Charbord P (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111:2631–2635

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Gaebel R, Furlani D, Sorg H, Polchow B, Frank J, Bieback K, Wang W, Klopsch C, Ong LL, Li W, Ma N, Steinhoff G (2011) Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS ONE 6:e15652

    Article  PubMed  CAS  Google Scholar 

  • Grauss RW, van Tuyn J, Steendijk P, Winter EM, Pijnappels DA, Hogers B, Gittenberger-De Groot AC, van der Geest R, van der Laarse A, de Vries AA, Schalij MJ, Atsma DE (2008) Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts. Stem Cells 26:1083–1093

    Article  PubMed  Google Scholar 

  • Haasters F, Prall WC, Anz D, Bourquin C, Pautke C, Endres S, Mutschler W, Docheva D, Schieker M (2009) Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. J Anat 214:759–767

    Article  PubMed  Google Scholar 

  • Hu S, Yang L, Sun H (2009) A review of studies on a subset of rapidly self-renewing marrow stromal cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 26:890–894

    PubMed  CAS  Google Scholar 

  • Ishimura D, Yamamoto N, Tajima K, Ohno A, Yamamoto Y, Washimi O, Yamada H (2008) Differentiation of adipose-derived stromal vascular fraction culture cells into chondrocytes using the method of cell sorting with a mesenchymal stem cell marker. Tohoku J Exp Med 216:149–156

    Article  PubMed  Google Scholar 

  • Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M (2006) In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun 340:639–647

    Article  PubMed  CAS  Google Scholar 

  • Kaltz N, Ringe J, Holzwarth C, Charbord P, Niemeyer M, Jacobs VR, Peschel C, Haupl T, Oostendorp RA (2010) Novel markers of mesenchymal stem cells defined by genome-wide gene expression analysis of stromal cells from different sources. Exp Cell Res 316:2609–2617

    Article  PubMed  CAS  Google Scholar 

  • Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–1052

    Article  PubMed  CAS  Google Scholar 

  • Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106:984–991

    Article  PubMed  CAS  Google Scholar 

  • Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM (2008) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95:137–148

    Article  PubMed  CAS  Google Scholar 

  • Mias C, Lairez O, Trouche E, Roncalli J, Calise D, Seguelas MH, Ordener C, Piercecchi-Marti MD, Auge N, Salvayre AN, Bourin P, Parini A, Cussac D (2009) Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 27:2734–2743

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  • Noel D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, Jorgensen C, Cousin B (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Peran M, Marchal JA, Lopez E, Jimenez-Navarro M, Boulaiz H, Rodriguez-Serrano F, Carrillo E, Sanchez-Espin G, de Teresa E, Tosh D, Aranega A (2010) Human cardiac tissue induces transdifferentiation of adult stem cells towards cardiomyocytes. Cytotherapy 12:332–337

    Article  PubMed  CAS  Google Scholar 

  • Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6:2884–2889

    Article  PubMed  CAS  Google Scholar 

  • Pountos I, Corscadden D, Emery P, Giannoudis PV (2007) Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 38(Suppl 4):S23–S33

    Article  PubMed  Google Scholar 

  • Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  PubMed  Google Scholar 

  • Rota M, Kajstura J, Hosoda T, Bearzi C, Vitale S, Esposito G, Iaffaldano G, Padin-Iruegas ME, Gonzalez A, Rizzi R, Small N, Muraski J, Alvarez R, Chen X, Urbanek K, Bolli R, Houser SR, Leri A, Sussman MA, Anversa P (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA 104:17783–17788

    Article  PubMed  CAS  Google Scholar 

  • Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798

    Article  PubMed  CAS  Google Scholar 

  • Sadat S, Gehmert S, Song YH, Yen Y, Bai X, Gaiser S, Klein H, Alt E (2007) The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 363:674–679

    Article  PubMed  CAS  Google Scholar 

  • Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530–541

    Article  PubMed  Google Scholar 

  • Shim WS, Jiang S, Wong P, Tan J, Chua YL, Tan YS, Sin YK, Lim CH, Chua T, Teh M, Liu TC, Sim E (2004) Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 324:481–488

    Article  PubMed  CAS  Google Scholar 

  • Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138:722–737

    Article  PubMed  CAS  Google Scholar 

  • Singh AM, Hamazaki T, Hankowski KE, Terada N (2007) A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25:2534–2542

    Article  PubMed  CAS  Google Scholar 

  • Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ (2004) Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 22:823–831

    Article  PubMed  Google Scholar 

  • Taha MF, Hedayati V (2010) Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell 42:211–216

    Article  PubMed  CAS  Google Scholar 

  • Tamai K, Yamazaki T, Chino T, Ishii M, Otsuru S, Kikuchi Y, Iinuma S, Saga K, Nimura K, Shimbo T, Umegaki N, Katayama I, Miyazaki J, Takeda J, McGrath JA, Uitto J, Kaneda Y (2011) PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci USA 108:6609–6614

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Wang J, Yang J, Kong X, Zheng F, Guo L, Zhang L, Huang Y (2009) Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur J Cardiothorac Surg 36:644–650

    Article  PubMed  Google Scholar 

  • Tarnok A, Ulrich H, Bocsi J (2010) Phenotypes of stem cells from diverse origin. Cytometry A 77:6–10

    PubMed  Google Scholar 

  • Tsuji H, Miyoshi S, Ikegami Y, Hida N, Asada H, Togashi I, Suzuki J, Satake M, Nakamizo H, Tanaka M, Mori T, Segawa K, Nishiyama N, Inoue J, Makino H, Miyado K, Ogawa S, Yoshimura Y, Umezawa A (2010) Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res 106:1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  PubMed  CAS  Google Scholar 

  • Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28:2667–2677

    Article  PubMed  Google Scholar 

  • Vallier L, Mendjan S, Brown S, Chng Z, Teo A, Smithers LE, Trotter MW, Cho CH, Martinez A, Rugg-Gunn P, Brons G, Pedersen RA (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Song T, Wu P, Chen Y, Fan X, Chen H, Zhang J, Huang C (2011) Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells. Mol Med Rep 5:108–113

    PubMed  Google Scholar 

  • Yoon J, Min BG, Kim YH, Shim WJ, Ro YM, Lim DS (2005) Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol 60:277–284

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the Brilliancy Talent Project (No. 084200510020) of Henan province, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Kun Guo or He Li.

Additional information

Qiong Li, Zhi-Kun Guo and He Li designed research; Qiong Li, Li-Jie Qi and Hong-Bo Zuo performed research; Na-Na Li contributed part reagents; Qiong Li analysed data and wrote the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Qi, LJ., Guo, ZK. et al. CD73+ adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro. J Mol Hist 44, 411–422 (2013). https://doi.org/10.1007/s10735-013-9492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-013-9492-9

Keywords

Navigation