Skip to main content
Log in

Reduced expression of aquaporin 9 in tubal ectopic pregnancy

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Previous studies demonstrate significant roles for passive water channels (aquaporins, AQPs) in maintaining water homeostasis in cell membranes of endometrial cells during decidualisation and embryo implantation. However, there is little information regarding the role of AQPs in the human fallopian tube, specifically their role in human tubal ectopic pregnancy. In this study we took tissue samples from the site of implantation of tubal ectopic pregnancy (group 1, N = 30, mean age 32 years, range 23–42) and the corresponding non-implantation site in women undergoing salpingectomy for tubal pregnancy (group 2). Ampullary fallopian tubes during mid-secretory phase were collected as control group (group 3, N = 17, mean age 37 years, range 30–50). Thin sections were prepared and stained with anti-AQP9, and, for estrogen and progesterone receptors in each group. Immunohistochemical studies showed that AQP9 proteins localize in the cytoplasm of epithelial cells of Fallopian tube. Expression of AQP9 was significantly reduced during tubal pregnancy compared to controls (group 1 vs. group 3, P = 0.036; group 2 vs. group 3, P = 0.029), and, this reduced expression was not related to estrogen receptor or progesterone receptor status (group 2, ER vs. AQP9, Pearson r = 0.173, P = 0.361; PR vs. AQP9, Pearson r = 0.124, P = 0.514, respectively). Similarly, there is no correlation between AQP9 and estrogen receptor or progesterone receptor status in the normal group (group 3, ER vs. AQP9, Pearson r = −0.026, P = 0.923; PR vs. AQP9, Pearson r = −0.292, P = 0.255, respectively). Reduced expression of AQP9 in human fallopian tube may contribute to aspects of pathophysiology of tubal ectopic pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels–from atomic structure to clinical medicine. J Physiol 542(Pt 1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Branes MC, Morales B, Rios M, Villalon MJ (2005) Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium. Am J Physiol Cell Physiol 288(5):C1048–C1057. doi:10.1152/ajpcell.00420.2003

    Article  PubMed  CAS  Google Scholar 

  • Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190:3–28. doi:10.1007/978-3-540-79885-9_1

    Article  PubMed  CAS  Google Scholar 

  • Gannon BJ, Warnes GM, Carati CJ, Verco CJ (2000) Aquaporin-1 expression in visceral smooth muscle cells of female rat reproductive tract. J Smooth Muscle Res 36(5):155–167

    Article  PubMed  CAS  Google Scholar 

  • He RH, Sheng JZ, Luo Q, Jin F, Wang B, Qian YL, Zhou CY, Sheng X, Huang HF (2006) Aquaporin-2 expression in human endometrium correlates with serum ovarian steroid hormones. Life Sci 79(5):423–429. doi:10.1016/j.lfs.2006.01.020

    Article  PubMed  CAS  Google Scholar 

  • Horne AW, King AE, Shaw E, McDonald SE, Williams AR, Saunders PT, Critchley HO (2009) Attenuated sex steroid receptor expression in fallopian tube of women with ectopic pregnancy. J Clin Endocrinol Metab 94(12):5146–5154. doi:10.1210/jc.2009-1476

    Article  PubMed  CAS  Google Scholar 

  • Huang HF, He RH, Sun CC, Zhang Y, Meng QX, Ma YY (2006) Function of aquaporins in female and male reproductive systems. Hum Reprod Update 12(6):785–795. doi:10.1093/humupd/dml035

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K (2009) New members of mammalian aquaporins: AQP10-AQP12. Handb Exp Pharmacol 190:251–262. doi:10.1007/978-3-540-79885-9_13

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244(1):268–274. doi:10.1006/bbrc.1998.8252

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576(3):335–340

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Cho G, Yuan Z, Skowronski MT, Pan Y, Ishida H (2006) Water channels and zymogen granules in salivary glands. J pharmacol sci 100(5):495–512

    Article  PubMed  CAS  Google Scholar 

  • Jablonski EM, McConnell NA, Hughes FM Jr, Huet-Hudson YM (2003) Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol Reprod 69(5):1481–1487. doi:10.1095/biolreprod.103.019927

    Article  PubMed  CAS  Google Scholar 

  • Ji YF, Chen LY, Xu KH, Yao JF, Shi YF (2009) Locally elevated leukemia inhibitory factor in the inflamed fallopian tube resembles that found in tubal pregnancy. Fertil Steril 91(6):2308–2314. doi:10.1016/j.fertnstert.2008.01.110

    Article  PubMed  CAS  Google Scholar 

  • King LS, Nielsen S, Agre P, Brown RH (2002) Decreased pulmonary vascular permeability in aquaporin-1-null humans. Proc Natl Acad Sci USA 99(2):1059–1063. doi:10.1073/pnas.022626499

    Article  PubMed  CAS  Google Scholar 

  • Lindsay LA, Murphy CR (2004) Redistribution of aquaporins in uterine epithelial cells at the time of implantation in the rat. Acta Histochem 106(4):299–307

    Article  PubMed  CAS  Google Scholar 

  • Lindsay LA, Murphy CR (2006) Redistribution of aquaporins 1 and 5 in the rat uterus is dependent on progesterone: a study with light and electron microscopy. Reproduction 131(2):369–378. doi:10.1530/rep.1.00914

    Article  PubMed  CAS  Google Scholar 

  • Lindsay LA, Murphy CR (2007) Aquaporins are upregulated in glandular epithelium at the time of implantation in the rat. J Mol Histol 38(1):87–95. doi:10.1007/s10735-007-9083-8

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Nagase H, Huang CG, Calamita G, Agre P (2006) Purification and functional characterization of aquaporin-8. Biol Cell 98(3):153–161

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Frøkiær J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82(1):205–244

    PubMed  CAS  Google Scholar 

  • Png FY, Murphy CR (2000) Closure of the uterine lumen and the plasma membrane transformation do not require blastocyst implantation. Eur J Morphol 38(2):122–127

    Article  PubMed  CAS  Google Scholar 

  • Richard C, Gao J, Brown N, Reese J (2003) Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144(4):1533–1541

    Article  PubMed  CAS  Google Scholar 

  • Skowronski MT (2010) Distribution and quantitative changes in amounts of aquaporin 1, 5 and 9 in the pig uterus during the estrous cycle and early pregnancy. Reprod biol endocrinol 8:109. doi:10.1186/1477-7827-8-109

    Article  PubMed  Google Scholar 

  • Skowronski MT, Kwon TH, Nielsen S (2009) Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J Histochem Cytochem: off j Histochem Soc 57(1):61–67. doi:10.1369/jhc.2008.952499

    Article  CAS  Google Scholar 

  • Skowronski MT, Skowronska A, Nielsen S (2011) Fluctuation of aquaporin 1, 5, and 9 expression in the pig oviduct during the estrous cycle and early pregnancy. J Histochem Cytochem: off j Histochem Soc 59(4):419–427. doi:10.1369/0022155411400874

    Article  CAS  Google Scholar 

  • Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am j physiol 277(5 Pt 2):F685–F696

    PubMed  CAS  Google Scholar 

  • Verkman AS, Shi LB, Frigeri A, Hasegawa H, Farinas J, Mitra A, Skach W, Brown D, Van Hoek AN, Ma T (1995) Structure and function of kidney water channels. Kidney Int 48(4):1069–1081

    Article  PubMed  CAS  Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402(6758):184–187. doi:10.1038/46045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Caiyun Zhou is gratefully acknowledged for technical assistance. We are grateful for pathological department of our hospital provided the endometrial histological analysis and graded the sections semiquantitatively. This work was supported by the National Nature Science Foundation of China (No. 81000233 and No. 81270659); a project funded by the Population and Family Planning Commission of Zhejiang Province of P. R. China (Grant No. Y 2009 (74)).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Y.F., Chen, L.Y., Xu, K.H. et al. Reduced expression of aquaporin 9 in tubal ectopic pregnancy. J Mol Hist 44, 167–173 (2013). https://doi.org/10.1007/s10735-012-9471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9471-6

Keywords

Navigation