Skip to main content
Log in

A morphological study on Leydig cells of scrotal hyperthermia applied rats in short-term

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Testicular function is highly dependent on temperature control. The aim of this study was designed to investigate the morphological changes and regulation of steroidogenesis by light and electron microscopic level in Leydig cells (LC) after scrotal hyperthermia in rats. The rats were randomly allotted into one of four experimental groups: A (Control), B (1 day after scrotal hyperthermia), C (14 days after scrotal hyperthermia), D (35 days after scrotal hyperthermia); each group contain seven animals. Scrotal hyperthermia was carried out in a thermostatically controlled water bath at 43°C for 30 min once daily for 6 consecutive days. Control rats were treated in the same way, except the testes were immersed in a water bath maintained at 22°C. Hyperthermia applied rats were sacrificed under 50 mg/kg ketamine anaesthesia after 1, 14 and 35 days, and biopsy materials of testis were obtained for light and electron microscopic examinations. To date, no histopathological changes of LC injury after scrotal hyperthermia in rats have been reported. Light microscopic examinations indicated increase degenerative LC, decrease in number of testosterone positive LC in interstitial area after scrotal hyperthermia in short-term. In scrotal hyperthermia, a dilated smooth endoplasmic reticulum, swollen mitochondria, and vanished mitochondrial cristae were observed. The nuclei of some LC displayed deep invaginations and irregular outlines. The number of lipid droplets was very considerably increased in most LC when compared to control group. As a conclusion, we claim that temperatures higher than the body temperature may cause infertility by damaging LC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amatayakul K, Ryan R, Uozumi T, Albert A (1971) A reinvestigation of testicular-anterior pituitary relationships in the rat I. Effects of castration and cryptorchidism. Endocrinology 88:872–880

    PubMed  CAS  Google Scholar 

  • Bartlett JMS, Sharpe RM (1987) Effect of local heating of the rat testis on the levels in interstitial fluid of a putative paracrine regulator of the Leydig cells and its relationship to changes in Sertoli cell secretory function. J Reprod Fertil 80:279–287. doi:10.1530/jrf.0.0800279

    PubMed  CAS  Google Scholar 

  • Bartlett JM, Kerr JB, Sharpe RM (1986) The effect of selective destruction and regeneration of rat Leydig cells on the intratesticular distribution of testosterone and morphology of the seminiferous epithelium. J Androl 7:240–253

    PubMed  CAS  Google Scholar 

  • Bedford JM (1978) Anatomical evidence for the epididymis as the prime mover in the evolution of the scrotum. Am J Anat 152:483–508. doi:10.1002/aja.1001520404

    Article  PubMed  CAS  Google Scholar 

  • Bedrak E, Samiloff V, Sod-Moriah UA (1973) Metabolism of 3b-hydroxy-5-ene steroids by testes of rats acclimatized to a hot environment. J Endocrinol 58:207–217. doi:10.1677/joe.0.0580207

    Article  PubMed  CAS  Google Scholar 

  • Bremner WJ, Millar MR, Sharpe RM, Saunders PT (1994) Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology 135:1227–1234. doi:10.1210/en.135.3.1227

    Article  PubMed  CAS  Google Scholar 

  • Christensen AK (1975) Leydig cells. In: Handbook of Physiology, sect. 7, Endocrinology: male reproductive system, vol 5. Washington

  • Damber JE, Bergh A, Janson PO (1978) Testicular blood flow and testosterone concentrations in the spermatic venous blood in rats with experimental cryptorchidism. Acta Endocrinol (Copenh) 88:611–618

    CAS  Google Scholar 

  • Eik-Nes KB (1968) Effect of temperature changes on secretion of testosterone by the canine testis in vivo. In: Proceedings of the sixth international congress on animal reproduction and artificial insemination, vol 1. Paris, p 269

  • Ewing L, Brown BL (1977) Testicular steroidogenesis. In: Johnson AD, Gomes WR (eds) The testis, vol 4. Academic Press, New York, p 239

    Google Scholar 

  • Ezeasor DN (1985) Light and electron microscopical observations on the Leydig cells of the scrotal and abdominal testes of naturally unilateral cryptorchid West African dwarf goats. J Anat 141:27–40

    PubMed  CAS  Google Scholar 

  • Fenster L, Katz DF, Wyrobek AJ, Pieper C, Rempel DM, Oman D et al (1997) Effects of psychological stress on human semen quality. J Androl 18:194–202

    PubMed  CAS  Google Scholar 

  • Galil KAA, Setchell BP (1988) Effects of local heating of the testis on testicular blood flow and testosterone secretion in the rat. Int J Androl 11:73–85. doi:10.1111/j.1365-2605.1988.tb01218.x

    Article  PubMed  CAS  Google Scholar 

  • Gaytan F, Romero JL, Morales C, Reymundo C, Bellido C, Aguilar E (1995a) Response of testicular macrophages to EDS-induced Leydig cell death. Andrologia 27:259–265

    PubMed  CAS  Google Scholar 

  • Gaytan F, Bellido C, Morales C, van Rooijen N, Aguilar E (1995b) Role of testicular macrophages in the response of Leydig cells to gonadotrophins in young hypophysectomized rats. J Endocrinol 147:463–471. doi:10.1677/joe.0.1470463

    Article  PubMed  CAS  Google Scholar 

  • Gaytan F, Bellido C, Morales C, Reymundo C, Aguilar E, Rooijen N (1995c) Response to Leydig cell apoptosis in the absence of testicular macrophages. J Reprod Immunol 29:81–94. doi:10.1016/0165-0378(95)00934-D

    Article  PubMed  CAS  Google Scholar 

  • Haider SG (2004) Cell biology of Leydig cells in the testis. Int Rev Cytol 233:181–241. doi:10.1016/S0074-7696(04)33005-6

    Article  PubMed  CAS  Google Scholar 

  • Hall RW, Gomes WR (1975) The effect of artilicial cryptorchidism on serum oestrogen and testosterone levels in the adult male rat. Acta Endocrinol (Copenh) 80:583–591

    CAS  Google Scholar 

  • Hardy MP, Ganjam VK (1997) Stress, 11b-HSD, and Leydig cell function. J Androl 18:475–479

    PubMed  CAS  Google Scholar 

  • Hardy MP, Sottas CM, Ge RS, McKittrick CR, Tamashiro KL, McEwen BS et al (2002) Trends of reproductive hormones in male rats during psychosocial stress: role of glucocorticoid metabolism in behavioral dominance. Biol Reprod 67:1750–1755. doi:10.1095/biolreprod.102.006312

    Article  PubMed  CAS  Google Scholar 

  • Henriksen K, Hakovirta H, Parvinen M (1995) Testosterone inhibits and induces apoptosis in rat seminiferous tubules in a stage-specific manner: in situ quantification in squash preparations after administration of ethane dimethane sulfonate. Endocrinology 136:3285–3291. doi:10.1210/en.136.8.3285

    Article  PubMed  CAS  Google Scholar 

  • Hochereau-De Reviers MT, Blanc MR, Cahoreau C, Courot M, Dacheux JL, Pisselet C (1979) Histological testicular parameters in bilateral cryptorchid adult rams. Ann Biol Anim Biochim Biophys 19:1141–1146. doi:10.1051/rnd:19790714

    Article  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin–biotin-peroxidase complex (ABC) in immuno peroxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  • Kerr JB, Millar M, Maddocks S, Sharpe RM (1993) Stage-dependent changes in spermatogenesis and Sertoli cells in relation to the onset of spermatogenic failure following withdrawal of testosterone. Anat Rec 235:547–559. doi:10.1002/ar.1092350407

    Article  PubMed  CAS  Google Scholar 

  • Kormano M, Harkonen M, Kontinen E (1964) Effect of experimental cryptorchidism on the histochemically demonstrable dehydrogenase of the rat testes. Endocrinology 74:44–51

    Article  PubMed  CAS  Google Scholar 

  • Kurowicka B, Gajewska A, Amarowicz R, Kotwica G (2007) Effect of warm-rearing and heat acclimation on pituitarygonadal axis in male rats. Int J Androl 30:1–9. doi:10.1111/j.1365-2605.2006.00731.x

    Article  Google Scholar 

  • Liu Z, Stocco DM (1997) Heat shock-induced inhibition of acute steroidogenesis in MA-10 cells is associated with inhibition of the synthesis of the steroidogenic acute regulatory protein. Endocrinology 138:2722–2728. doi:10.1210/en.138.7.2722

    Article  PubMed  CAS  Google Scholar 

  • Llaurado JG, Dominguez V (1963) Effect of cryptorchidism on testicular enzymes involved in androgen biosynthesis. Endocrinology 72:292–295

    PubMed  CAS  Google Scholar 

  • Lue Y-H, Sinha Hikim AP, Swerdloff RS, Im P, Seng Taing K, Bui T et al (1999) Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity. Endocrinology 140:1709–1717. doi:10.1210/en.140.4.1709

    Article  PubMed  CAS  Google Scholar 

  • Lynch R, Lewis-Jones DI, Machin DG, Desmond AD (1986) Improved seminal characteristics in infertile men after a conservative treatment regimen based on the avoidance of testicular hyperthermia. Fertil Steril 46:476–479

    PubMed  CAS  Google Scholar 

  • Main SJ, Davies RV, Setchell BP (1978) Feedback control by the testis of gonadotropin secretion: an examination of the inhibin hypothesis. J Endocrinol 79:255–270. doi:10.1677/joe.0.0790255

    Article  PubMed  CAS  Google Scholar 

  • Maines MD, Ewing JF (1996) Stress response of the rat testis: in situ hybridization and immunohistochemical analysis of heme oxygenase-1 (HSP32) induction by hyperthermia. Biol Reprod 54:1070–1079. doi:10.1095/biolreprod54.5.1070

    Article  PubMed  CAS  Google Scholar 

  • Maric D, Kostic T, Kovacevic R (1996) Effects of acute and chronic immobilization stress on rat Leydig cell steroidogenesis. J Steroid Biochem Mol Biol 58:351–355. doi:10.1016/0960-0760(96)00044-1

    Article  PubMed  CAS  Google Scholar 

  • Monder C, Miroff Y, Marandici A, Hardy MP (1994) 11b-hydroxysteroid dehydrogenase alleviates glucocorticoid-mediated inhibition of steroidogenesis in rat Leydig cells. Endocrinology 134:1199–1204. doi:10.1210/en.134.3.1199

    Article  PubMed  CAS  Google Scholar 

  • Munabi AK, Cassorla FG, D’Agata R (1984) The effects of temperature on the activity of testicular steroidogenic enzymes. Steroids 43:325–331. doi:10.1016/0039-128X(84)90050-3

    Article  PubMed  CAS  Google Scholar 

  • Murphy BD, Lalli E, Walsh LP, Liu Z, Soh J, Stocco DM et al (2001) Heat shock interferes with steroidogenesis by reducing transcription of the steroidogenic acute regulatory protein gene. Mol Endocrinol 15:1255–1263. doi:10.1210/me.15.8.1255

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy IJ, Sheffield JW (1991) Effect of temperature and the role of testicular descent on post-natal testicular androgen production in the mouse. J Reprod Fertil 91:357–364. doi:10.1530/jrf.0.0910357

    PubMed  CAS  Google Scholar 

  • Orr TE, Taylor MF, Bhattacharyya AK, Collins DC, Mann DR (1994) Immobilization stress disrupts testicular steroidogenesis in adult male rats by inhibiting the activities of 17a-hydroxylase and 17, 20-lyase without affecting the binding LH/hCG receptors. J Androl 15:302–308

    PubMed  CAS  Google Scholar 

  • Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25:947–970. doi:10.1210/er.2003-0030

    Article  PubMed  CAS  Google Scholar 

  • Payne AH, Youngblood GL (1995) Regulation of expression of steroidogenic enzymes in Leydig cells. Biol Reprod 52:217–225. doi:10.1095/biolreprod52.2.217

    Article  PubMed  CAS  Google Scholar 

  • Ren L, Medan MS, Ozu M, Li C, Watanabe G, Taya K (2006) Effects of experimental cryptorchidism on sperm motility and testicular endocrinology in adult male rats. J Reprod Dev 52:219–228. doi:10.1262/jrd.17073

    Article  PubMed  CAS  Google Scholar 

  • Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ (2001) Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod 65:229–239. doi:10.1095/biolreprod65.1.229

    Article  PubMed  CAS  Google Scholar 

  • Saez JM (1994) Leydig cells: endocrine, paracrine, and autocrine regulation. Endocr Rev 15:574–626

    PubMed  CAS  Google Scholar 

  • Setchell BP, Waites GMH (1972) The effects of local heating on the flow and composition of rete testis fluid in the rat, with some observations of the effects of age and unilateral castration. J Reprod Fertil 30:225–233. doi:10.1530/jrf.0.0300225

    PubMed  CAS  Google Scholar 

  • Setchell BP, Tao L, Zupp JL (1996) The penetration of chromium-EDTA from blood plasma into various compartments of rat testes, as an indicator of function of the blood–testis barrier, following exposure of the testes to heat. J Reprod Fertil 106:125–133. doi:10.1530/jrf.0.1060125

    Article  PubMed  CAS  Google Scholar 

  • Setchell BP, Plöen L, Ritzen EM (2001) Reduction of long-term effects of local heating of the testis by treatment of rats with GnRH agonist and an anti-androgen. Reproduction 122:255–263. doi:10.1530/rep.0.1220255

    Article  PubMed  CAS  Google Scholar 

  • Sharpe RM, Maddocks S, Millar M, Kerr JB, Saunders PTK, McKinnell C (1992) Testosterone and spermatogenesis: identification of stage-specific androgen-regulated proteins secreted by adult rat seminiferous tubules. J Androl 13:172–184

    PubMed  CAS  Google Scholar 

  • Shikone T, Billig H, Hsueh AJW (1994) Experimentally induced cryptorchidism increases apoptosis in the rat testis. Biol Reprod 51:865–872. doi:10.1095/biolreprod51.5.865

    Article  PubMed  CAS  Google Scholar 

  • Skinner JD, Rowson LE (1968) Some effects of unilateral cryptorchidism and vasectomy on sexual development of the ram and bull. J Endocrinol 42:311–321. doi:10.1677/joe.0.0420311

    Article  PubMed  CAS  Google Scholar 

  • Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17:221–244. doi:10.1210/er.17.3.221

    PubMed  CAS  Google Scholar 

  • Tapanainen JS, Tilly JL, Vihko KK, Hsueh AJ (1993) Hormonal control of apoptotic cell death in the testis: gonadotropins and androgens as testicular cell survival factors. Mol Endocrinol 7:643–650. doi:10.1210/me.7.5.643

    Article  PubMed  CAS  Google Scholar 

  • Troiano L, Fustini MF, Lovato E, Frasoldati A, Malorni W, Capri M et al (1994) Apoptosis and spermatogenesis: evidence from an in vivo model of testosterone withdrawal in the adult rat. Biochem Biophys Res Commun 202:1315–1321. doi:10.1006/bbrc.1994.2074

    Article  PubMed  CAS  Google Scholar 

  • Van Straaten HWM, Wensing CJG (1977) Histomorphological aspects of testicular morphogenesis in the naturally unilateral cryptorchid pig. Biol Reprod 17:473–479. doi:10.1095/biolreprod17.4.473

    Article  PubMed  Google Scholar 

  • van Straaten HWM, Ribbers-Der Ridder R, Wensing CJG (1978) Early deviations of testicular Leydig cells in the naturally unilateral cryptorchid pig. Biol Reprod 19:171–176. doi:10.1095/biolreprod19.1.171

    Article  PubMed  Google Scholar 

  • Yaeram J, Setchell BP, Maddocks S (2006) Effects of heat stress on the fertility of male mice in vivo and in vitro. Reprod Fertil Dev 18:647–653. doi:10.1071/RD05022

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kanter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktas, C., Kanter, M. A morphological study on Leydig cells of scrotal hyperthermia applied rats in short-term. J Mol Hist 40, 31–39 (2009). https://doi.org/10.1007/s10735-009-9210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-009-9210-9

Keywords

Navigation