Skip to main content
Log in

The new insight of auxin functions: transition from seed dormancy to germination and floral opening in plants

  • Review Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In angiosperms, plants go through different transitions to complete a life cycle. These different transition stages are crucial for plant development. External and internal stimuli affect these transitions, including environmental condition and phytohormones. Auxin is one of the classical phytohormones and crucial to plant morphogenesis establishment and various physiological processes, like phototropism, cell differentiation, cell expansion, floral opening, organ abscission and seed germination. Abscisic acid (ABA) and gibberellic acid (GA) are widely known to work antagonistically in seed germination. Apart from GA and ABA, recent studies have demonstrated that auxin is also involved in the transition from seed dormancy to germination and floral opening. Auxin promotes seed dormancy and inhibits seed germination. Moreover, functions of auxin during floral opening is promising for complementing hormonal crosstalk during this process. In this review, we focus on auxin–ABA crosstalk in regulation of seed germination and dormancy mainly in model plant Arabidopsis thaliana and summarize the knowledge about auxin-mediated flowering in several different species. The systematical knowledge of hormonal signaling provides a guidance for uncovering largely unknown functions of auxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amijima M, Iwata Y, Koizumi N, Mishiba K (2014) The polar auxin transport inhibitor TIBA inhibits endoreduplication in dark grown spinach hypocotyls. Plant Sci 225:45–51

    Article  CAS  PubMed  Google Scholar 

  • Arc E, Galland M, Godin B, Cueff G, Rajjou L (2013) Nitric oxide implication in the control of seed dormancy and germination. Front Plant Sci 4:346

    PubMed Central  PubMed  Google Scholar 

  • Baylis T, Cierlik I, Sundberg E, Mattsson J (2013) SHORT INTERNODES/STYLISH genes, regulators of auxin biosynthesis, are involved in leaf vein development in Arabidopsis thaliana. N Phytol 197:737–750

    Article  CAS  Google Scholar 

  • Bentsink L, Koornneef M (2008) Seed dormancy and germination. Arabidopsis Book 6:e0119

    Article  PubMed Central  PubMed  Google Scholar 

  • Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    CAS  PubMed  Google Scholar 

  • Brady SM, Sarkar S, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75

    Article  CAS  PubMed  Google Scholar 

  • Calderon Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8:477–485

    Article  CAS  PubMed  Google Scholar 

  • Chandler JW (2016) Auxin response factors. Plant Cell Environ 39:1014–1028

    Article  CAS  PubMed  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Yin S, Tu Y, Mei H, Wang Y, Yang Y (2020) SlCAND1, encoding cullin-associated Nedd8-dissociated protein 1, regulates plant height, flowering time, seed germination, and root architecture in tomato. Plant Mol Biol 102(4–5):537–551

    Article  CAS  PubMed  Google Scholar 

  • Cheng YDX, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das A, Kim DW, Khadka P, Rakwal R, Rohila JS (2017) Unraveling key metabolomic alterations in wheat embryos derived from freshly harvested and water-imbibed seeds of two wheat cultivars with contrasting dormancy status. Front Plant Sci 8:1203

    Article  PubMed Central  PubMed  Google Scholar 

  • Dave AVF, Gilday AD, Penfield SD, Graham IA (2016) Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. J Exp Bot 67(8):2277–2284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005a) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005b) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Do BH, Phuong VTB, Tran G-B, Nguyen NH (2019) Emerging functions of chromatin modifications in auxin biosynthesis in response to environmental alterations. Plant Growth Regul 87(1):165–174

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Footitt S (2017) Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J Exp Bot 68:843–856

    Article  CAS  PubMed  Google Scholar 

  • Gu D, Chen CY, Zhao M, Zhao L, Duan X, Duan J, Wu K, Liu X (2017) Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Res 45(12):7137–7150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo X, Yu C, Luo L, Wan H, Zhen N, Li Y, Cheng T, Wang J, Pan H, Zhang Q (2018) Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea. Plant Mol Biol. https://doi.org/10.1007/s11103-018-0727-8

    Article  PubMed  Google Scholar 

  • Han Z, Wang B, Tian L, Wang S, Zhang J, Guo S, Zhang H, Xu L, Chen Y (2020) Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.). Physiol Plant 168(1):205–217

    Article  CAS  PubMed  Google Scholar 

  • Havens KA, Guseman JM, Jang SS, Pierre-Jerome E, Bolten N, Klavins E, Nemhauser JL (2012) A synthetic approach reveals extensive tunability of auxin signaling. Plant Physiol 160:135–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z (2012) DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24:1815–1833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hisamatsu T, King RW (2008) The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59:3821–3829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y, Zeng X, Cao H (2018) Hormonal regulation of floret closure of rice (Oryza sativa). PLoS ONE 13:e0198828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones AM, Venis MA (1989) Photoaffinity labeling of indole-3-acetic acid-binding proteins in maize. Proc Natl Acad Sci USA 86:6153–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke M, Gao Z, Chen J, Qiu Y, Zhang L, Chen X (2018) Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biol 18:143. https://doi.org/10.1186/s12870-018-1357-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leprince O, Pellizzaro A, Berriri S, Buitink J (2017) Late seed maturation: drying without dying. J Exp Bot 68:827–841

    CAS  PubMed  Google Scholar 

  • Li M, Chen X, He D et al (2020) Proteomic analysis reveals that calcium channel blockers affect radicle protrusion during rice seed germination. Plant Growth Regul 90:393–407

    Article  CAS  Google Scholar 

  • Li W, Zhou Y, Liu X, Yu P, Cohen JD, Meyerowitz EM (2013) LEAFY controls auxin response pathways in floral primordium formation. Sci Signal 6:23

    Google Scholar 

  • Li Z, Zhang J, Liu Y, Zhao J, Fu J, Ren X, Wang G, Wang J (2016) Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. BMC Plant Biol 16:41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu PP, Montgomery T, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen CY, Wang KC, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh HL, Wu K (2013a) PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25:1258–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013b) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci USA 110:15485–15490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Liu F, Chu J, Yi X, Fan W, Tang T, Chen G, Guo Q, Zhao X (2019) A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). BMC Plant Biol 19(1):264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lobler M, Klambt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.) I Purification by immunological methods and characterization. J Biol Chem 260:9848–9853

    CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    Article  CAS  PubMed  Google Scholar 

  • MacGregor DR, Kendall SL, Florance H, Fedi F, Moore K, Paszkiewicz K, Smirnoff N, Penfield S (2015) Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. N Phytol 205:642–652. https://doi.org/10.1111/nph.13090

    Article  CAS  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Mutasa-Gottgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15:1998–2006

    Article  CAS  PubMed  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richter R, Behringer C, Muller IK, Schwechheimer C (2010) The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev 24:2093–2104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richter R, Behringer C, Zourelidou M, Schwechheimer C (2013) Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proc Natl Acad Sci USA 110:13192–13197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565–2577

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R, Gomez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot 114:1445–1458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shuai H, Meng Y, Luo X, Chen F, Zhou W, Dai Y, Qi Y, Du J, Yang F, Liu J, Yang W, Shu K (2017) Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci Rep 7:12620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Bhosale R (2019) Developmental roles of AUX1/LAX auxin influx carriers in Plants. Front Plant Sci 10:1306

    Article  PubMed Central  PubMed  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

  • Thingnaes E, Torre S, Ernstsen A, Moe R (2003) Day and night temperature responses in Arabidopsis: effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann Bot 92:601–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543. https://doi.org/10.1105/tpc.008417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Urva SH, Jamil Y, Haq ZU, Mujahid T, Khan AU, Iqbal M, Abbas M (2017) Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes. J Photochem Photobiol B 170:314–323

    Article  CAS  PubMed  Google Scholar 

  • Vachon G, Tichtinsky G, Parcy F (2012) LEAFY, a master regulator of flower development. Biol Aujourdhui 206:63–67

    Article  CAS  PubMed  Google Scholar 

  • Vaistij FE, Gan Y, Penfield S, Gilday AD, Dave A, He Z, Josse EM, Choi G, Halliday KJ, Graham IA (2013) Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proc Natl Acad Sci USA 110:10866–10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Doorn WG, Dole I, Celikel FG, Harkema H (2013) Opening of Iris flowers is regulated by endogenous auxins. J Plant Physiol 170:161–164

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Pan J, Li Y, Lou D, Hu Y, Yu D (2016) The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering. Plant Physiol 172:479–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z (2011) Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7:e1002172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang R, Estelle M (2014) Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr Opin Plant Biol 21:51–58

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Liu D, Abdul W, Upreti S, Liu Y, Song G, Wu J, Liu B, Gan Y (2018) PIL5 represses floral transition in Arabidopsis under long day conditions. Biochem Biophys Res Commun 499:513–518

    Article  CAS  PubMed  Google Scholar 

  • Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D (2015) Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. Elife 4:e09269

    Article  PubMed Central  PubMed  Google Scholar 

  • Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 12:178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu C, Zhang Y, Yu Y, Li Y, Wei S (2018) Suppression of Arabidopsis flowering by near-null magnetic field is mediated by auxin. Bioelectromagnetics 39(1):15–24. https://doi.org/10.1002/bem.22086

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Wu MF, Winter CM, Berns MC, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek BA, Wagner D (2013) A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell 24:271–282

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Qin W, Li Y, Zhang C, Wang Y, Yang Z, Ge X, Li F (2019) Red light promotes cotton embryogenic callus formation by influencing endogenous hormones, polyamines and antioxidative enzyme activities. Plant Growth Regul 87(2):187–199

    Article  CAS  Google Scholar 

  • Zhao JPP, Schmitz RJ, Decker AD, Tax FE, Li J (2002) Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol 130:1221–1229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    Article  CAS  PubMed  Google Scholar 

  • Zhao YCS, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Tang H, Cheng MP, Dankwa KO, Chen ZX, Li ZY, Gao S, Liu YX, Jiang QT, Lan XJ, Pu ZE, Wei YM, Zheng YL, Hickey LT, Wang JR (2017) Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces. Front Plant Sci 8:401

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor John Schiefelbein from Department of Molecular, Cellular and Developmental Biology, University of Michigan for revising the manuscript with original English writing. The research was funded by National Natural Science Foundation of China (Grant Nos. 31529001, 31570183, 31661143004) and Major State Basic Research Development Program (973 Program, Grant No. 2015CB150200).

Author information

Authors and Affiliations

Authors

Contributions

All the authors in this manuscript have contributed substantially to the manuscript and approved the final submission.

Corresponding author

Correspondence to Yinbo Gan.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Wu, J. & Gan, Y. The new insight of auxin functions: transition from seed dormancy to germination and floral opening in plants. Plant Growth Regul 91, 169–174 (2020). https://doi.org/10.1007/s10725-020-00608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00608-1

Keywords

Navigation