Skip to main content
Log in

The effect of cadmium on the microRNAome, degradome and transcriptome of rice seedlings

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The damage induced by the uptake of cadmium (Cd) into the rice plant is of growing concern. Although many micro-RNAs (miRNAs) and their target genes have been identified in experiments designed to elucidate the molecular impact of exposure to Cd, as yet there has been no attempt to integrate data from sequencing the microRNAome, the degradome and the transcriptome of rice plants exposed to Cd. Here, the abundance of 40 miRNAs was shown to be substantially altered as response to Cd exposure. Of those, 38 (belonging to 22 known miRNA families) were already documented in rice and two (PC-3p-38247_129 and PC-3p-102187_26) are novel. The abundance of 18 genes differentially transcribed as a result of Cd exposure was found to be inversely correlated to that of 18 of the Cd-responsive miRNAs. The majority of the target genes encoded transcription factors, including ARF13, SCL6, various SPLs, NFYA6, GAMYB, and various NACs which encode proteins that participate in signal transduction and abiotic stress resistance. In all, the present study established a fundamental basis for evaluating the regulatory role of miRNA and their targets in plant exposure to Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18(10):758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101(31):11511–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301(5631):336–338

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y (2012) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504(2):160–165

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Candela H, Hake S (2009) Big impacts by small RNAs in plant development. Curr Opin Plant Biol 12:81–86

    Article  CAS  PubMed  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62(10):3563–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Qu A, Gong S, Huang S, Lv B, Zhu C (2013) Molecular identification and analysis of cd-responsive microRNAs in rice. J Agric Food Chem 61(47):11668–11675

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Wang Y, Jiang Z et al (2017) MicroRNA268 overexpression affects rice seedling growth under cadmium stress. J Agric Food Chem 65(29):5860–5867

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Gong S, Wang Y et al (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177(4):1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Hu XF, Wu XH, Shu Y, Jiang Y, Yan XJ (2013) Effects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province. Central South China. Environ Monit Assess. 185(12):9843–9856

    Article  CAS  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83(Supplement C):33–46

    Article  CAS  Google Scholar 

  • Gielen H, Remans T, Vangronsveld J, Cuypers A (2016) Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7. BMC Plant Biol 16:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distanc root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Yin H, Song X, Zhang Y, Liu M, Sang J, Jiang J, Li J, Zhuo R (2016) Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator uncovers a complex regulatory network and provides insights into cadmium phytoremediation. Plant Biotech J 14(6):1470–1483

    Article  CAS  Google Scholar 

  • Harris MA, Clark J, Ireland A et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):258–261

    Google Scholar 

  • Hernandez LE, CarpenaRuiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19(12):1581–1598

    Article  CAS  Google Scholar 

  • Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 103(2):282–287

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kang XP, Gao JP, Zhao JJ et al (2017) Identification of cadmium-responsive microRNAs in Solanum torvum by high-throughput sequencing. Russ J Plant Physiol 64(2):283–300

    Article  CAS  Google Scholar 

  • Kato Y, Sun X, Zhang L, Sakamoto W (2012) Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. Plant Physiol 159(4):1428–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosolsaksakul P, Farmer JG, Oliver IW, Graham MC (2014) Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environ Pollut 187:153–161

    Article  CAS  PubMed  Google Scholar 

  • Lalitha S (2000) Primer Premier 5. Biotech Software & Internet Report 1(6):270–272

    Article  Google Scholar 

  • Lang QL, Jin CZ, Lai LY, Feng JL, Chen SN, Chen JS (2011) Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X. Mol Biol Rep 38(3):1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J. 62(5):742–759

    Article  CAS  PubMed  Google Scholar 

  • Li BS, Duan H, Li JG, Deng XW, Yin WL, Xia XL (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81(6):525–539

    Article  CAS  PubMed  Google Scholar 

  • Lu SF, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell. 17(8):2186–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez G, Forment J, Llave C, Pallas V, Gomez G (2011) High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PLoS ONE. https://doi.org/10.1371/journal.pone.0019523

    Article  PubMed  PubMed Central  Google Scholar 

  • Meharg AA, Norton G, Deacon C, Williams P, Adomako EE, Price A, Zhu YG, Li G, Zhao FJ, McGrath S et al (2013) Variation in rice cadmium related to human exposure. Environ Sci Technol 47(11):5613–5618

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Hai B, Guo J et al (2016) Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol Biochem 101:60–67

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MF, Mao DH, Xu LW, Li DY, Song SH, Chen CY (2014) Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings. BMC Genom. https://doi.org/10.1186/1471-2164-15-835

    Article  Google Scholar 

  • Trapnell C, Pachte L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60(9):2677–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K (1996) Comparative study on Cd phytotoxicity to different genes of rice. Rural Eco-Environ 12(3):18–23

    CAS  Google Scholar 

  • Wang B, Cheng D, Chen Z, Zhang M, Zhang G, Jiang M, Tan M (2019) Bioinformatic exploration of the targets of Xylem Sap miRNAs in Maize under Cadmium Stress. Int J Mol Sci. https://doi.org/10.3390/ijms20061474

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ, Sun J, Fan YL, Wang L (2012) Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genom. https://doi.org/10.1186/1471-2164-13-421

    Article  Google Scholar 

  • Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64(14):4271–4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Dong M, Peng X et al (2019) New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. Ecotoxicol Environ Saf 171:301–312

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Zhao C, Zhou J, Yang Y, Wang P, Zhu X, Tang G, Bressan R, Zhu J (2016) The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in Arabidopsis thaliana. PLoS Genet 12(11):e1006416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang ZM, Chen J (2013) A potential role of microRNAs in plant response to metal toxicity. Metallomics 5(9):1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Wang JL, Fang W, Yuan JG, Yang ZY (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370(2–3):302–309

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wu L, Fu L et al (2019) Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley. Plant Growth Regul 87(3):389–401

    Article  CAS  Google Scholar 

  • Zhang Q et al (2013) Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. BMC Plant Biol 13:180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou GK, Kubo M, Zhong RQ, Demura T, Ye ZH (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48(3):391–404

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374(3):538–542

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63(12):4597–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Yang YC, Shen C et al (2017) Comparative analysis between low- and high-cadmium-accumulating cultivars of Brassica parachinensis to identify difference of cadmium-induced microRNA and their targets. Plant Soil 420(1–2):223–237

    Article  CAS  Google Scholar 

  • Zhou Q, Yang Y, Yang Z (2019) Molecular dissection of cadmium-responsive transcriptome profile in a low cadmium-accumulating cultivar of Brassica parachinensis. Ecotoxicol Environ Saf 176:85–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2017YFD0100300), Agricultural Sciences and Technologies Innovation Program of Chinese Academy of Agricultural Sciences (CAAS) and by the Central Level, Non-Profit, Scientific Research Institutes Basic R & D Operations Special Fund (Y2017PT46; 2017RG002-1).

Author information

Authors and Affiliations

Authors

Contributions

MZ, FH, RL and YL performed the experiments. MZ and XW analyzed the data. PH and XW conceived the project. MZ, ZS and UA drafted the manuscript. PH, XW and ST critically revised the article. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xiangjin Wei or Peisong Hu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Huang, F., Luo, R. et al. The effect of cadmium on the microRNAome, degradome and transcriptome of rice seedlings. Plant Growth Regul 90, 15–27 (2020). https://doi.org/10.1007/s10725-019-00547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00547-6

Keywords

Navigation