Skip to main content
Log in

Transcriptomic analysis of maize kernel row number-associated miRNAs between a single segment substitution line and its receptor parent

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To detect microRNAs (miRNAs) involved in determining kernel row number in maize, next generation deep sequencing was performed on an elite inbred line Zong3 (row number 14–16) of maize in China and a single segment substitution line (SSSL) SSL-10 (row number 8–10) derived from the same genetic background. In SSL-10, the single segment is inserted in chromosome 1 between molecular marker bnlg1953 and bnlg1811. Twenty-eight miRNAs belonging to 11 conserved miRNA families in maize showed expression differences >2-fold in the two lines, among which 14 members from four miRNA families were up-regulated and 14 members from 7 miRNA families were repressed in SSL-10. A genome wide degradome was sequenced to validate the miRNA target genes in solid experiment. In addition, novel miRNAs associated with ear development were predicted using a series of strict criteria, and 29 miRNAs representing eight families were predicted as novel miRNAs. Among the novel miRNAs, only one showed an expression difference >2-fold. The conserved and novel miRNAs with >2-fold expression differences were treated as candidate miRNAs involved in maize kernel row number determination. MiRNA-dependent gene expression regulation and physiological and morphological effects on ear development may explain why the SSSL changed kernel row number compared with its recurrent parent. Based on the interaction of miRNAs and their target genes, a possible miRNA-dependent pathway leading to the given DNA fragment inducing a change in kernel row number was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ARFs:

Auxin response factors

DCL:

Dicer-like

MFEI:

Minimal folding free energy index

NF-Y:

Nuclear factor Y

NGS:

Next generation sequencing

QTL:

Quantitative trait loci

RT-PCR:

Reverse transcription

SM:

Spikelet meristems

SPL:

SQUAMOSA promoter-binding-like

SPM:

Spikelet pair meristems

SSR:

Quantitative trait loci

SSSL:

Single segment substitution line

TFs:

Transcription factors

References

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18(10):758–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25(1):130–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132(2):709–717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennetzen J, Hake S (2009) Handbook of maize: its biology. Springer, Berlin

    Book  Google Scholar 

  • Bommert P, Nagasawa NS, Jackson D (2013) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 45:334–338. doi:10.1038/ng.2534

  • Bortiri E, Chuck G, Vollbrecht E et al (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell Online 18(3):574–585

    Article  CAS  Google Scholar 

  • Bowman JL (2004) Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? BioEssays 26(9):938–942

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Sci Signal 320(5880):1185

    CAS  Google Scholar 

  • Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177(3):589–607

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lin HJ, Pan GT et al (2010) Identification of known microRNAs in root and leaf of maize by deep sequencing. Yi Chuan 32(11):1175

    PubMed  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E et al (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298(5596):1238–1241

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K et al (2007a) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39(4):544–549

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007b) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39(12):1517–1521

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Whipple C, Jackson D et al (2010) The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development 137(8):1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding D, Wang Y, Han M, Fu Z, Li W, Liu Z, Hu Y, Tang J (2012) MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS ONE 7(6):e39578. doi:10.1371/journal.pone.0039578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Douglas RN, Wiley D, Sarkar A et al (2010) ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell Online 22(5):1441–1451

    Article  CAS  Google Scholar 

  • Hobert O (2008) Gene regulation by transcription factors and microRNAs. Sci Signal 319(5871):1785

    CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kellogg EA (2000) The grasses: a case study in macroevolution. Annu Rev Ecol Syst 31:217–238

  • Kulcheski FR, de Oliveira LFV, Molina LG et al (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genom 12(1):307

    Article  CAS  Google Scholar 

  • Li XY, Mantovani R, Hooft van Huijsduijnen R et al (1992) Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic Acids Res 20(5):1087–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N et al (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52(1):133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Jia H, Cao X, Huang J, Li F, Tao Y, Qiu F, Zheng Y, Zhang Z (2012a) Fine mapping and candidate gene prediction of a pleiotropic quantitative trait locus for yield-related trait in Zea mays. PLoS ONE 7(11):e49836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Z, Kumari S, Zhang L, Zheng Y, Ware D (2012b) Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS ONE 7(6):e39786. doi:10.1371/journal.pone.0039786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Marin E, Jouannet V, Herz A et al (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell Online 22(4):1104–1117

    Article  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell Online 17(3):705–721

    Article  CAS  Google Scholar 

  • Millar AA, Waterhouse PM (2005) Plant and animal microRNAs: similarities and differences. Funct Integr Genomics 5(3):129–135

    Article  CAS  PubMed  Google Scholar 

  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci 106(52):22534–22539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nogueira FTS, Chitwood DH, Madi S et al (2009) Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 5(1):e1000320

    Article  PubMed Central  PubMed  Google Scholar 

  • Schauer SE, Jacobsen SE, Meinke DW et al (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7(11):487–491

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Jiang Z, Lu S, Lin H, Gao S, Peng H, Yuan G, Liu L, Zhang Z, Zhao M, Rong T, Pan G (2013) Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Biochem Biophys Res Commun 441(2):425–430

    Article  CAS  PubMed  Google Scholar 

  • Song JB, Huang SQ, Dalmay T et al (2012) Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS. Plant Cell Physiol 53(7):1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Liang X, Nekl ER et al (2005) Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 41(5):744–754

    Article  CAS  PubMed  Google Scholar 

  • Wang QQ, Liu F, Chen XS et al (2010) Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96(6):369–376

    Article  CAS  Google Scholar 

  • Wang L, Zhang Z, Teng F et al (2012) Application of chromosomal segment introgression line (CSIL) in crop genetics and breeding. J Plant Genet Resour 1:014

    Google Scholar 

  • Warpeha KM, Upadhyay S, Yeh J et al (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143(4):1590–1600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ (2006) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 49:476–484. doi:10.1139/G06-005

  • Xie F, Wang Q, Sun R, Zhang B (2014) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot. doi:10.1093/jxb/eru437

    Google Scholar 

  • Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M (2013a) Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genom 14(1):9

    Article  Google Scholar 

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013b) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64(6):1521–1536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cox SB et al (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63(2):246–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Schwarz S, Saedler H, Huijser P (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol 63(3):429–439

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chia JM, Kumari S et al (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5(11):e1000716

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao B, Ge L, Liang R et al (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10(1):29

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Nature Foundation of China (31370033).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Tang.

Additional information

Bin Wang and Yadong Xue have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Xue, Y., Zhang, Z. et al. Transcriptomic analysis of maize kernel row number-associated miRNAs between a single segment substitution line and its receptor parent. Plant Growth Regul 78, 145–154 (2016). https://doi.org/10.1007/s10725-015-0081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0081-7

Keywords

Navigation