Skip to main content
Log in

Regulation of gibberellin on gene expressions related with the lignin biosynthesis in ‘Wangkumbae’ pear (Pyrus pyrifolia Nakai) fruit

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Wangkumbae’ pear (Pyrus pyrifolia Nakai) was used as material and genes encoding enzymes involved in lignin biosynthesis were cloned: two of 4-coumarate:coenzyme A ligase (4CL) genes Pp4CL1 and Pp4CL2, another two cinnamyl alcohol dehydrogenase (CAD) genes PpCAD1 and PpCAD2, and four peroxidase (POD) genes PpPOD1, PpPOD2, PpPOD3 and PpPOD4. The result of real-time PCR analysis showed a similar expression pattern of PpPAL1 and PpPAL2 with higher accumulation of transcripts at fruit developing early stage and low accumulation at late stage. The expression of PpPAL1 and PpPAL2 revealed down-regulation in gibberellin (GA)-treated fruit. The accumulations of Pp4CL1 and Pp4CL2 transcripts were higher in fruit developing early stage compared with those in late stage, and Pp4CL2 expression level was higher than Pp4CL1. Pp4CL1 and Pp4CL2 expression levels in GA-treated fruit were lower compared with in the control fruit. The relative expression level of PpCAD2 showed higher than PpCAD1 and reached a peak at 53 day after blooming. The expressions of PpCAD2 in GA-treated fruit was significantly lower compared with those in the control fruit in early developmental stage, which was consistent with developmental dynamics of sclereid and dynamic changes in lignin contents during the development. The expression of PpPOD4 gene was significantly higher than PpPOD1, PpPOD2 and PpPOD3 during developmental stages. The expressions of PpPOD1, PpPOD2, and PpPOD4 increased firstly and then decreased during the development of the control fruit. PpPOD1 expression in GA-treated fruit was lower than that in the control fruit, which was consistent with the changes in lignin contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4CL:

4-Coumarate-coenzyme A ligase

IAA:

Auxin

CAD:

Cinnamyl alcohol dehydrogenase

GA:

Gibberellin

G-lignin:

Guaiacyl lignin

H-lignin:

Hydroxyphenyl lignin

POD:

Peroxidase

PAL:

Phenylalanine ammonia lyase

S-lignin:

Syringyl lignin

References

  • Aloni R, Tollier MT, Monties B (1990) The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of coleus blumei stems. Plant Physiol 94(4):1743–1747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bate NJ, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner PW, Dixon RA, Lamb CJ, Elkind Y (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci 91(16):7608–7612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier M-T, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inzé D (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112(4):1479–1490

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi:10.1146/annurev.arplant.54.031902.134938

    Article  CAS  PubMed  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8(12):576–581. doi:10.1016/j.tplants.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Xu CJ, Li X, Ferguson IB, Chen KS (2006) Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biol Technol 40(2):163–169

    Article  CAS  Google Scholar 

  • Cai Y, Li G, Nie J, Lin Y, Nie F, Zhang J, Xu Y (2010) Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci Hortic 125(3):374–379

    Article  CAS  Google Scholar 

  • Cheng H, Li L, Xu F, Cheng S, Cao F, Wang Y, Yuan H, Jiang D, Wu C (2013) Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba. Mol Biol Rep 40(1):707–721

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Bauw G, Welinder KG, Van Montagu M, Boerjan W (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118(1):125–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65(11):1557–1564. doi:10.1016/j.phytochem.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  • Crist JW, Batjer Z (1931) The stone cells of pear fruits, especially the Kieffer pear. Mich State Agr Exp State Tech Bull 113:1–55

    Google Scholar 

  • Endler A, Martens S, Wellmann F, Matern U (2008) Unusually divergent 4-coumarate: CoA-ligases from Ruta graveolens L. Plant Mol Biol 67(4):335–346

    Article  CAS  PubMed  Google Scholar 

  • Eudes A, Pollet B, Sibout R, Do CT, Séguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225(1):23–39

    Article  CAS  PubMed  Google Scholar 

  • Gross G, Stöckigt J, Mansell R, Zenk M (1973) Three novel enzymes involved in the reduction of ferulic acid to coniferyl alcohol in higher plants: ferulate: co a ligase, feruloyl-Co a reductase and coniferyl alcohol oxidoreductase. FEBS Lett 31(3):283–286

    Article  CAS  Google Scholar 

  • Hu WJ, Kawaoka A, Tsai CJ, Lung J, Osakabe K, Ebinuma H, Chiang VL (1998) Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides). Proc Natl Acad Sci USA 95(9):5407–5412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ipekci Z, Ogras T, Bajrovic K, Kazan K, Gozukirmizi N, Boydak M, Tank T, Akalp T, Ozden O, Calikoglu M (1999) Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar. Plant Biotechnol 16(5):381–387

    Article  CAS  Google Scholar 

  • Korth KL, Blount JW, Chen F, Rasmussen S, Lamb C, Dixon RA (2001) Changes in phenylpropanoid metabolites associated with homology-dependent silencing of phenylalanine ammonia-lyase and its somatic reversion in tobacco. Physiol Plant 111(2):137–143

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA 92(13):5905–5909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu XP, Liu YZ, An JC, Hu HJ, Peng SA (2011) Isolation of a cinnamoyl CoA reductase gene involved in formation of stone cells in pear (Pyrus pyrifolia). Acta Physiol Plant 33(2):585–591

    Article  CAS  Google Scholar 

  • Ostergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder KG, Mundy J, Gajhede M, Henriksen A (2000) Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol 44(2):231–243

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JP, Ullman C, Moore M, Choo Y, Chua NH (2006) Regulation of Arabidopsis thaliana 4-coumarate:coenzyme-A ligase-1 expression by artificial zinc finger chimeras. Plant Biotechnol J 4(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Sewalt V, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115(1):41–50

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shan LL, Li X, Wang P, Cai C, Zhang B, De Sun C, Zhang WS, Xu CJ, Ferguson IB, Chen KS (2008) Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta 227(6):1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Stockigt J, Mansell R, Gross G, Zenk M (1973) Enzymic reduction of p-coumaric acid via p-coumaroyl-CoA to p-coumaryl alcohol by a cell-free system from Forstthia sp. Z für Pflanzenphysiol 70(4):305–307

    Article  Google Scholar 

  • Tao S, Zhang S, Qiao Y, Sheng B (2004) Study on sclereids and activities of several related enzymes during the development of pear fruit. J Fruit Sci 6:516–520

    Google Scholar 

  • Tao S, Khanizadeh S, Zhang H, Zhang S (2009) Anatomy, ultra structure and lignin distribution of stone cell in two Pyrus species. Plant Sci 176(3):413–419

    Article  CAS  Google Scholar 

  • Van Huan H, Van Giang H, Van Thanh N, Zhang S, Wang Y (2012) Identification and functional analysis of the Pm4CL1 gene in transgenic tobacco plant as the basis for regulating lignin biosynthesis in forest trees. Mol Breed 29(1):173–180

    Article  CAS  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285. doi:10.1016/j.pbi.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  • Yin XR, Shi YN, Min T, Luo ZR, Yao YC, Xu Q, Ferguson I, Chen KS (2012) Expression of ethylene response genes during persimmon fruit astringency removal. Planta 235(5):895–906. doi:10.1007/s00425-011-1553-2

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Morrison WH, Negrel J, Ye Z-H (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10(12):2033–2045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the China Agricultural Research System (CARS-29-07), the Project of National Natural Science Foundation of China (31201608), Shangdong Province Young and Middle-Aged Scientists Research Awards Fund (BS2010NY009), and the Science and Technology Foundation Program of Qingdao, People’s Republic of China (No. 12-1-4-5-(8)-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SL., Zhang, XN., Lu, GL. et al. Regulation of gibberellin on gene expressions related with the lignin biosynthesis in ‘Wangkumbae’ pear (Pyrus pyrifolia Nakai) fruit. Plant Growth Regul 76, 127–134 (2015). https://doi.org/10.1007/s10725-014-9982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9982-0

Keywords

Navigation