Skip to main content
Log in

Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera ‘Cabernet Sauvignon’ berry skin

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

‘Cabernet Sauvignon’ (Vitis vinifera L.) grape berries were treated with 0.4 mg/l 24-epibrassinolide applied once at fruit set (‘pea-sized berry’ phenological stage) (EBR-T1) or the same concentration EBR applied twice at fruit set and 14 days before véraison (EBR-T2). Berries sprayed with deionized water served as the control. The contents of proanthocyanidins (PAs) in the berry skin and seed, and the expression patterns of structural genes (VvLAR1, VvLAR2, VvANR, and VvANS) and transcription regulator genes (VvMYB5a, VvMYB5b, and VvMYBPA1) of PAs in the berry skin were measured. At berry maturity, total tannins in the skin of EBR-T1- and EBR-T2-treated berries were significant higher than those in control. Monomeric and oligomeric flavan-3-ols showed different levels of promotion by 24-epibrassinolide during berry development. The mRNA levels of the structural genes VvLAR1, VvLAR2, and VvANS and the transcription regulator gene VvMYBPA1 were affected significantly by 24-epibrassinolide treatment, but the effects varied at different stages of berry development. Most of the targets measured showed no significant difference between the EBR-T1 and EBR-T2 treatments. Thus, in general, application of 24-epibrassinolide enhanced PAs biosynthesis in the berry skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANR:

Anthocyanin reductase

ANS:

Anthocyanidin synthase

BRs:

Brassinosteroids

DAA:

Days after anthesis

EBR:

24-Epibrassinolide

LAR:

Leucoanthocyanin reductase

PAs:

Proanthocyanidins

RR:

Red ripe

TPC:

Total phenolics content

References

  • Ahamd P, Bhardwaj R, Tuteja N (2012) Plant signaling under abiotic stress environment. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plant in the era of climate change. Springer, New York, pp 297–323

    Chapter  Google Scholar 

  • Ali MB, Howard S, Chen SW, Wang YC, Yu O, Kovacs LG et al (2011) Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. BMC Plant Biol 11:1–23

    Article  Google Scholar 

  • Bautista-Ortín AB, Rodriguez-Rodriguez P, Gil-Munoz R, Jimenez-Pascual E, Busse-Valverde N, Martinez-Cutillas A, Lopez-Roca JM, Gomez-Plaza E (2012) Influence of berry ripeness on concentration, qualitative composition and extractability of grape seed tannins. Am J Enol Vitic 18:123–130

    Google Scholar 

  • Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139:652–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bucchettia B, Matthews MA, Falginella L, Peterlunger E, Castellarin SD (2011) Effect of water deficit on Merlot grape tannins and anthocyanins across four seasons. Sci Hortic 128:297–305

    Article  Google Scholar 

  • Busse-Valverde N, Gomez-Plaza E, Lopez-Roca JM, Gil-Munoz R, Fernandez-Fernandez JI, Bautista-Ortın AB (2010) Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. J Agric Food Chem 58:11333–11339

    Article  CAS  PubMed  Google Scholar 

  • Chai YM, Zhang Q, Tian L, Li CL, Xing Y, Qin L et al (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69:63–69

    Article  CAS  Google Scholar 

  • Chira K, Schmauch G, Saucier C, Fabre S, Teissedre PL (2009) Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from Bordeaux wine grapes (Cabernet Sauvignon and Merlot) for two consecutive vintages (2006 and 2007). J Agric Food Chem 57:545–553

    Article  CAS  PubMed  Google Scholar 

  • Clouse S (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982

    Article  CAS  PubMed  Google Scholar 

  • Clouse S, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Deluc L, Barrieu F, Marchive C, Lauvergeat C, Decendit A, Richard T et al (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C et al (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom 8:429

    Article  Google Scholar 

  • Deluc LG, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM et al (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dixon RA, Liu CG, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  CAS  PubMed  Google Scholar 

  • Downey MO, Harvey JS, Robinson SP (2003) Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust J Grape Wine Res 9:15–27

    Article  CAS  Google Scholar 

  • Drinkine J, Lopes P, Kennedy JA, Teissedre PL, Saucier C (2007) Analysis of ethylidene-bridged flavan-3-ols in wine. J Agric Food Chem 55:1109–1116

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn KW, Lorenz DH (1977) Phanologische Entwicklungsstadien der Rebe. Nachr Dtsch Pflanzenschutzd (Braunschweig) 29:119–120

    Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gagne S, Saucier C, Geny L (2006) Composition and cellular localization of tannins in Cabernet Sauvignon skins during growth. J Agric Food Chem 54:9465–9471

    Article  CAS  PubMed  Google Scholar 

  • Gagne S, Lacampagne S, Claisse O, Geny L (2009) Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-Sauvignon during development. Plant Physiol Biochem 47:282–290

    Article  CAS  PubMed  Google Scholar 

  • Gomes MMA (2011) Physiological effects related to brassinosteroid application in plant. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, New York, pp 193–242

    Chapter  Google Scholar 

  • Huo SS, Xi ZM, Ma LN, Luan LY (2012) Effect of plant growth regulator on the quality of Cabernet Sauvignon grape. J Northwest A&F Univ (Nat Sci Ed) 40:183–189 (in Chinese)

    Google Scholar 

  • Jiang B, Zhang ZW (2012) Comparison on phenolic compounds and antioxidant properties of Cabernet Sauvignon and merlot wines from four wine grape-growing regions in China. Molecules 17:8804–8821

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JA, Jones GP (2001) Analysis of proanthocyanidin cleavage products following acid catalysis in the presence of excess phloroglucinol. J Agric Food Chem 49:1740–1746

    Article  CAS  PubMed  Google Scholar 

  • Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoids biosynthetic pathway in plants: function and evolution. BioEssays 16:123–132

    Article  CAS  Google Scholar 

  • Lacampagne S, Gagne S, Geny L (2010) Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin: new elements regarding the regulation of tannin composition and leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expression. J Plant Growth Regul 29:81–90

    Article  CAS  Google Scholar 

  • Lorrain B, Chira K, Teissedre PL (2011) Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: comparison to 2006, 2007 and 2008 vintages. Food Chem 126:1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Ma LN, Xi ZM, Gao X, Huo SS, Luan LY (2012) Effects of abscisic acid and 24-epibrassinolide on the endogenous contents of the plant hormone of berries in the process of grape ripening. North Hortic 17:16–19

    Google Scholar 

  • OIV (2012) International code of oenological practices. http://www.oiv.int/oiv/info/enpratiquesoenologiques

  • Roby G, Harbertson JF, Adams D, Matthews MA (2004) Berry size and vine water deficits as factors in winegrape. Aust J Grape Wine Res 10:100–107

    Article  CAS  Google Scholar 

  • Scafidi P, Pisciotta A, Patti D, Tamborra P, Di Lorenzo R, Barbagallo MG (2013) Effect of artificial shading on the tannin accumulation and aromatic composition of the Grillo cultivar (Vitis vinifera L.). BMC Plant Biol 13:175

    Article  PubMed Central  PubMed  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tattersall EA, Ergul A, Alkayal F, Deluc L, Cushman JC, Cramer GR (2005) Comparison of methods for isolating high-quality RNA from leaves of grape. Am J Enol Vitic 56:400–407

    CAS  Google Scholar 

  • Vardhini V, Rao S (2002) Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 16:843–847

    Article  Google Scholar 

  • Xi ZM, Meng JF, Huo SS, Luan LY, Ma LN, Zhang ZW (2012) Exogenously applied abscisic acid to Yan73 (V. vinifera) grapes enhances phenolic content and antioxidant capacity of its wine. Int J Food Sci Nutr 64:444–451

    Article  PubMed  Google Scholar 

  • Xi ZM, Wang ZZ, Fang YL, Hu ZY, Hu Y, Deng MM et al (2013a) Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. Plant Growth Regul 71:57–65

    Article  CAS  Google Scholar 

  • Xi ZM, Zhang ZW, Huo SS, Luan LY, Gao X, Ma LN et al (2013b) Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem 141:3056–3065

    Article  CAS  PubMed  Google Scholar 

  • Zaharah SS, Singh Z, Symons GM, Reid JB (2012) Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. J Plant Growth Regul 31:363–372

    Article  CAS  Google Scholar 

  • Zhang ZZ, Che XN, Pan QH, Li XX, Duan CQ (2013) Transcriptional activation of flavan-3-ols biosynthesis in grape berries by UV irradiation depending on developmental stage. Plant Sci 208:64–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Technology System for Grape Industry (CARS-30-zp-9), the Natural Science Foundation of Shaanxi Province (2011JM3004) and the Scientific Research Programme of Northwest A&F University (QN2009059). The authors acknowledge and thank these institutions for funding and Dr. Zhenwen Zhang for providing us advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-mei Xi.

Additional information

Fan Xu and Xiang Gao have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Gao, X., Xi, Zm. et al. Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera ‘Cabernet Sauvignon’ berry skin. Plant Growth Regul 75, 741–750 (2015). https://doi.org/10.1007/s10725-014-9976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9976-y

Keywords

Navigation