Skip to main content
Log in

Exogenous application of epibrassinolide attenuated Verticillium wilt in upland cotton by modulating the carbohydrates metabolism, plasma membrane ATPases and intracellular osmolytes

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Verticillium dahliae toxin (Vd toxin) was employed as pathogen free model system to induce osmotic stress on upland cotton and its amelioration is investigated using epibrassinolide (EBR). In this study, we observed the physiological and biochemical differences among Vd toxin alone and EBR + Vd toxin treated plants using different levels of root (5, 10, 15 nM) and shoot (50, 100, 200 nM) applied EBR. Results revealed that in absence of EBR, Vd toxin caused 83 % plant wilting and the levels of glycine betaine and proline were 33 and 61 % higher than non treated control, respectively. However, the accumulation of these osmolytes was decreased in EBR treated plants with minimum values at 5 and 200 nM. Furthermore, the results depicted a remarkable decline in soluble sugars, photosynthesis, transpiration, chlorophyll content and chlorophyll florescence (Fv/Fm) in Vd toxin alone treated plants than EBR + Vd toxin. Besides, the activities of sucrose synthase, sucrose phosphate synthase and acid invertase were high in Vd + EBR treated plants with increased root and shoot biomass than Vd toxin alone treated plants. Moreover, EBR remarkably regulated the levels of plasma membrane ATPases and contents of total ATPase and Na+ K+-ATPase were elevated while contents of Ca2+ Mg2+-ATPase and H+ K+-ATPase were decreased as compared to Vd toxin alone treated plants. This study broadens our understanding of Verticillium wilt and demonstrates the potential role of EBR in mediating tolerance against Vd toxin induced stress of V. dahliae in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AI:

Acid invertase

BRs:

Brassinosteroid

Brz:

Brassinozole

EBR:

24-Epibrassinolide

PLPC:

Protein–lipopolysaccharide complex

PM:

Plasma membrane

Pn:

Net photosynthesis

SPS:

Sucrose phosphate synthase

SuSy:

Sucrose synthase

TE:

Trachery elements

Tr:

Transpiration rate

Vd:

Verticillium dahliae

VW:

Verticillium wilt

References

  • Ahmed IM, Dai HX, Zheng W, Cao FB, Zhang GP, Sun D, Feibo Wu (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Cri Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD, Kolmer JA, Xu WW, Garvin DF (2008) Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Mol Plant Microbe Interact 21:1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Bonza MC, Luoni L, De Michelis MI (2004) Functional expression in yeast of an N-deleted form of At-ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana, and characterization of a hyperactive mutant. Planta 218:814–823

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    Article  CAS  PubMed  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Gupta B, Gupta R (2011) Epibrassinolide ameliorates Cr(VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Ann Rev Plant Biol 49:427–451

    Article  CAS  Google Scholar 

  • Conn SJ, Gilliham M, Schreiber AS, Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AA et al (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apo-plastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23:240–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding J, Shi K, Zhou Y-H, Yu J-Q (2009) Microbial community responses associated with the development of Fusarium oxysporum f. sp. cucumerinum after 24-epibrassinolide applications to shoots and roots in cucumber. Eur J Plant Pathol 124:141–150

    Article  CAS  Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1988) Stomatal closure fully accounts for the inhibition of photosynthesis by abscissic acid. New Phytol 108:263–266

    Article  CAS  Google Scholar 

  • Elmore JM, Coaker G (2011) The role of the plasma membrane H+-ATPase in plant–microbe interactions. Mol Plant 4:416–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farooq M, Wahid A, Basra SMA, Islam-ud-Din (2009) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci 195:262–269

    Article  CAS  Google Scholar 

  • Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9:1951–1962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goicoechea N, Aguirreolea J, Cenoz S, Garcia-Mina J (2000) Verticillium dahliae modifies the concentrations of proline, soluble sugars, starch, soluble protein and abscisic acid in pepper plants. Eur J Plant Pathol 106:19–25

    Article  CAS  Google Scholar 

  • Greive C, Grattan S (1983) Rapid assay for determination of water soluble quaternary-amino compounds. Plant Soil 70:303–307

    Article  Google Scholar 

  • Huisman OC (1982) Interrelations of root growth dynamics to epidemiology of root invading fungi. Ann Rev Phytopathol 20:303–327

    Article  Google Scholar 

  • Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Chen ZX, Yu JQ (2012) Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Zhejiang Univ Sci B 13(10):811–823

    Article  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Khripach V, Zhabinskii V, Groot AD (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Ann Rev Plant Biol 61:681–704

    Article  CAS  Google Scholar 

  • King SP, John EL, Robert TF (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol 114:153–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer R, Slater V, Dubery IA (1994) A phytotoxic protein–lipopolysaccharide complex produced by Verticillium dahliae. Phytochemistry 35:1449–1453

    Article  CAS  Google Scholar 

  • Munoz FJ, Labrador E, Dopico B (1998) Brassinolides promote the expression of a new Cicer arietinum β-tubulin gene involved in the epicotyl elongation. Plant Mol Biol 37:807–817

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Asami T, Yoshida S (2001) Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants (Lepidium sativum). Plant Cell Physiol 42:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  CAS  PubMed  Google Scholar 

  • Pustovoitova TN, Zhdanova NE, Zholkevich VN (2001) Epibrassinolide increases plant drought resistance. Dokl Biochem Biophys 376:36–38

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sairam SK (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 14:173–181

    Article  CAS  Google Scholar 

  • Samadi L, Behboodi BS (2006) Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2. Planta 225:223–234

    Article  CAS  PubMed  Google Scholar 

  • Singh T, Paleg I, Aspinall D (1973) Stress metabolism I. Nitrogen metabolism and growth in the barley plant during water stress. Aust J Biol Sci 26:45–56

    CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46:1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Zhang X, Liang B, Li S, Wu Z, Wang Q, Leng C, Dong J, Wang T (2010) Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium wilt. PLoS One 5:e14218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • VanderMolen GE, Labavitch JM, Strand LL, DeVay JE (1983) Pathogen-induced vascular gels: ethylene as a host intermediate. Physiol Plant 59:573–580

    Article  CAS  Google Scholar 

  • Wang FX, Ma YP, Yang CL, Zhao PM, Yao Y, Jian GL, Luo YM, Xia GX (2011) Proteomic analysis of the sea–island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics 11:4296–4309

    Article  CAS  PubMed  Google Scholar 

  • Wu FB, Wu LH, Xu FH (1998) Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton (Gossypium hirsutum L.). Field Crops Res 56:309–314

    Article  Google Scholar 

  • Xi Z, Wang Z, Fang Y, Hu Z, Hu Y, Deng M, Zhan Z (2013) Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. Plant Growth Regul 71(1):57–65

    Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto R, Fujioka S, Demura T, Takatsuto S, Yoshida S, Fukuda H (2001) Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol 125:556–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yemm E, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31171616) and Postdoctoral Scientific Research Foundation of Zhejiang Province: Bsh1202088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noreen Bibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibi, N., Fan, K., Dawood, M. et al. Exogenous application of epibrassinolide attenuated Verticillium wilt in upland cotton by modulating the carbohydrates metabolism, plasma membrane ATPases and intracellular osmolytes. Plant Growth Regul 73, 155–164 (2014). https://doi.org/10.1007/s10725-013-9877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9877-5

Keywords

Navigation