Skip to main content
Log in

Plant regeneration from different explant types of Bituminaria bituminosa and furanocoumarin content along plant regeneration stages

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The first protocol for in vitro plant regeneration from different explants of Bituminaria bituminosa, a pasture and medicinal species, has been established. Three explant types (petiole, leaflet and petiole-leaflet attachment “PLA”) cultured on media with different combinations of benzylaminopurine (BA; 5.0, 10.0 or 20.0 μM) and naphthalene acetic acid (NAA) or indole acetic acid (IAA; 0.5 or 5.0 μM) were tested for calli induction, and with 5 μM BA + 0.5 μM NAA or IAA for shoot development. The average number of shoots (≥5 mm) per callus depended on the explant type and the calli induction medium. The highest average number of shoots per callus was achieved by culturing leaflet and PLA explants on 5 μM IAA + 10 μM BA for calli induction and on 0.5 μM IAA + 5 μM BA for shoot development, and by culturing petiole explants on 0.5 μM NAA + 10 μM BA followed by a second culture on 0.5 μM NAA + 5 μM BA. The highest frequency of shoot rooting was achieved with 10.0 μM NAA and 1.0 μM gibberellic acid (GA3). Rooted plants were acclimatised in a culture chamber, reaching 96 % survival. Acclimatised plants were transferred to a greenhouse and finally to the field, reaching 100 % survival. The furanocoumarin (FC) accumulation was evaluated in organogenic calli, in vitro shoots, ex vitro plants in the greenhouse and in ex vitro plants in the field (after 1 and 4 months of acclimatisation). The content of FCs depended on the plant material evaluated, being higher in ex vitro plants in the field (up to 9,824 μg g−1 DW total FC) and lowest in organogenic calli (up to 50 μg g−1 DW total FC). This effect may be due to cell organization, longer exposure to environmental factors and the developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BA:

6-benzylaminopurine

NAA:

Naphthalene acetic acid

IBA:

Indole-3-butyric acid

IAA:

Indole-3-acetic acid

GA3 :

Gibberellic acid

PGR:

Plant Growth Regulator

½ MS medium:

Half strength of Murashige and Skoog (1962) mineral solution

FC:

Furanocoumarin

AC:

Activated charcoal

DW:

Dry weight

PLA:

Petiole-leaflet attachment

References

  • Ahmad N, Faisal M, Anis M, Aref IM (2010) In vitro callus induction and plant regeneration from leaf explants of Ruta graveolens. S Afr J Bot 76:597–600

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2009a) In vitro regeneration of Psoralea corylifolia L. through callus cultures. Plant Biotech 26:333–336

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2009b) An improve protocol for adventitious shoot regeneration and plant formation in Psoralea corylifolia L. Sci Hort 123:283–286

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N, Van Staden J (2011) Production of psoralen by in vitro regenerated plants from callus cultures of Psoralea corylifolia L. Plant Growth Regul 65:47–54

    Article  CAS  Google Scholar 

  • Berembaum M (1983) Coumarins and caterpillars: a case of evolution. Evolution 37:163–179

    Article  Google Scholar 

  • Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5:293–308

    Article  CAS  Google Scholar 

  • Cheng S, Van Houten B, Gamper HB, Sancar A, Hearst JE (1988) Use os psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of those cross-linked complexes by ABC exinuclease. J Biol Chem 263:15110–15117

    PubMed  CAS  Google Scholar 

  • Diwan R, Malpathak N (2010) Histochemical localization in Ruta graveolens cell cultures: elucidating the relationship between cellular differentiation and furanocoumarin production. In vitro Cell Dev Biol 46:108–116

    CAS  Google Scholar 

  • Hamerski D, Matern U (1988) Elicitor-induced biosynthesis of psoralens in Ammi majus L. suspension cultures: microsomal conversion of demethylsuberosin into (+) marmesin and psoralen. Eur J Biochem 171:369–375

    Article  PubMed  CAS  Google Scholar 

  • Hehmann M, Lukacin R, Ekiert H, Matern U (2004) Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O-methyltransferase. Eur J Biochem 271:932–940

    Article  PubMed  CAS  Google Scholar 

  • Martínez S, Correal E, Real D, Ortuño A, Del Río JA (2010) Bituminaria bituminosa: a source of furanocoumarins of pharmaceutical interest. In: Awaad AS, Govil JN, Singh VK (eds) Recent progress in medicinal plants (RPMP) vol 27 drug plants I. Studium Press, LLC, Texas, pp 307–322

    Google Scholar 

  • Martínez-Fernández D, Walker DJ, Romero-Espinar P, Flores P, del Río JA (2011) Physiological responses of Bituminaria bituminosa to heavy metals. J Plant Physiol 168:2206–2211

    Article  PubMed  Google Scholar 

  • Milesi S, Massot B, Gontier E, Bourgaud F, Guckert A (2001) Ruta graveolens L.: a promising species for the production of furanocoumarins. Plant Sci 161:189–199

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pande D, Purohit M, Srivastava PS (2002) Variation in xanthotoxin content in Ammi majus L. cultures during in vitro flowering and fruiting. Plant Sci 162:583–587

    Article  CAS  Google Scholar 

  • Pazos-Navarro M, Del Río JA, Ortuño A, Romero-Espinar P, Correal E, Dabauza M (2012) Micropropagation from apical and nodal segments of Bituminaria bituminosa and the furanocoumarin content of propagated plants. J Hort Sci Biotech 87:29–35

    CAS  Google Scholar 

  • Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O’Neal JM, Cornwell T, Pastor I, Fridlender B (2002) Plants and human health in the twenty-first century. Trends Biotech 20:522–531

    Article  CAS  Google Scholar 

  • Real D, Verbyla A (2010) Maximizing genetic gains using a “plant” model in the Tedera (Bituminaria bituminosa var. albomarginata and var. crassiuscula) breeding program in Australia. Options Méditerranéennes 92:87–96

    Google Scholar 

  • Real D, Albersten T, Snowball R, Howieson J, Revell C, Ewing M, Correal E, Méndez P, Rios S (2008) Bituminaria bituminosa var. albomarginata (Lancelot trefoil), a novel perennial forage legume for low-rainfall Mediterranean environments in Western Australia. In: XXI international grassland congress and VIII international rangeland congress, vol II. Hohhot, P.R. China, p 452

  • Real D, Li GD, Clark S, Albertsen TO, Hayes RC, Denton MD, D’Antuono MF, Dear BS (2011) Evaluation of perennial forage legumes and herbs in six Mediterranean environments. Chil J Agric Res 71:367–369

    Google Scholar 

  • Saxena C, Palai SK, Samantaray S, Rout GR, Das P (1997) Plant regeneration from callus of Psoralea corylifolia Linn. Plant Growth Regul 22:13–17

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA-Natural Resources Conservation Service, Washington

    Google Scholar 

  • Tiejten KG, Hunkler D, Matern U (1983) Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi 1. Identification of induced products as coumarin derivatives. Eur J Biochem 131:401–407

    Article  Google Scholar 

  • Trumble JT, Dercks W, Quiros CF, Beier RC (1990) Host plant resistance and linear furanocoumarin content of Apium accessions. J Econ Entomol 83:519–525

    PubMed  CAS  Google Scholar 

  • Walker DJ, Moñino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environ Exp Bot 55:258–265

    Article  CAS  Google Scholar 

  • Walker DJ, Bernal MP, Correal E (2007) The influence of heavy metals and mineral nutrient supply on Bituminaria bituminosa. Water Air Soil Pollut 184:335–345

    Article  CAS  Google Scholar 

  • Walker DJ, Martínez-Fernández D, Correal E, Romero-Espinar P, del Río JA (2012) Accumulation of furanocoumarins by Bituminaria bituminosa in relation to plant development and environmental stress. Plant Physiol Biochem 54:133–139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. Palazón and V. Arnau for their collaboration and excellent technical assistance and Dr. Walker for his critical review of the manuscript. This research was supported by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (RTA2007-00046-00-00), Ministerio de Ciencia e Innovación, (BFU2010-19599) and by a studentship provided by IMIDA to M. Pazos-Navarro. M. Dabauza was co-supported by the European Social Fund and IMIDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Dabauza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazos-Navarro, M., Del Río, J.A., Ortuño, A. et al. Plant regeneration from different explant types of Bituminaria bituminosa and furanocoumarin content along plant regeneration stages. Plant Growth Regul 70, 123–129 (2013). https://doi.org/10.1007/s10725-013-9784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9784-9

Keywords

Navigation