Skip to main content
Log in

Characterization of seed fatty acid accumulation in DELLA mutant lines of Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Arabidopsis seeds accumulate considerable fatty acids (FA/s) from embryo until maturity. The environmental stimuli and the regulatory factors that determine FA accumulation, however, remain unclear. In this study, we investigated the role of DELLAs, the negative regulatory factors in the gibberellin transduction pathway, in seed oil formation in Arabidopsis. Seed morphology, weight-per-thousand seeds, oil content, and FA composition were compared among the seeds of the DELLA ga1-3 rga-t2 rgl2-1 (triple), ga1-3 rga-t2 rgl1-1rgl2-1 (quadruple), ga1-3 gai-t6 rga-t2 rgl1-1 rgl 2-1 (penta), and wild type (WT), Landsberg erecta (Ler). Significant differences between the WT and the penta mutant for the above traits were observed. Compared with WT, the penta seeds were characterized by a decrease of 22 % seed oil in term of μg/mg, an increment of 10 % seed oil in term of FA/seed, and an alteration of FA composition. In general, the dynamics of FA accumulation in the penta and WT developing seeds (2–16 days after anthesis, DAA) were not obviously different. However, there was higher FA accumulation in penta seeds from 6 DAA compared with WT. RNA gel blotting indicated that the fatty acid desaturase genes were expressed in seeds as well as in leaves. The different transcript levels of the genes between the penta mutant and WT unveiled a part of the reasons accounting for the differences observed. To our knowledge, this is the first report on the effect of DELLAs on the dynamic process of seed oil formation of a flowering plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FA:

Fatty acid

TAG:

Triacylglycerols

GA:

Gibberellin

FAD:

Fatty acid desaturase

JA:

Jasmonic acid

GAI:

GA INSENSITIVE

RGA:

REPRESSOR OF ga1-3

RGL:

RGA-LIKE

WT:

Wild type

References

  • Achard P, Liao L, Jiang CF, Desnos T, Bartlett J, Fu XD, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi T, Steber CM (2007) Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis. Plant Cell 19:791–804

    Article  PubMed  CAS  Google Scholar 

  • Bachlava E, Burton JW, Brownie C, Wang S, Auclair J, Cardinal AJ (2008) Heritability of oleic acid content in soybean seed oil and its genetic correlation with fatty acid and agronomic traits. Crop Sci 48:1764–1772

    Article  CAS  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Cao DN, Hussain A, Cheng H (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105–113

    Article  PubMed  CAS  Google Scholar 

  • Cao DN, Cheng H, Wu W, Soo HM, Peng JR (2006) Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol 142:509–525

    Article  PubMed  CAS  Google Scholar 

  • Carrera C, Martínez MJ, Dardanelli J, Balzarini (2009) Water deficit effect on the relationship between temperature during the seed filling period and soybean seed oil and protein concentrations. Crop Sci 49:990–998

    Article  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu XD, Richards DE, Cao DN, Luo D, Harberd NP, Peng JR (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Dill A, Thomas SG, Hu J, Steber CM, Sun TP (2004) The Arabidopsis F-box protein SLEEPY1 targets GA signaling repressors for GA-induced degradation. Plant Cell 16:1392–1405

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    PubMed  CAS  Google Scholar 

  • Firn RD, Kende H (1974) Some effects of applied gibberellic acid on the synthesis and degradation of lipids in isolated barley aleurone layers. Plant Physiol 54:911–915

    Article  PubMed  CAS  Google Scholar 

  • Focks N, Benning C (1998) wrinkled1: a novle, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    Google Scholar 

  • Gesch RW, Cermak SC, Isbell TA, Forcella F (2005) Seed yield and oil content of cuphea as affected by harvest date. Agron J 97:817–822

    Article  Google Scholar 

  • Gibson KIS, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C (1993) A gene encoding a chloroplast omega-3 fatty acid desaturase complements alteration in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem 268:24099–24105

    PubMed  Google Scholar 

  • Grindstaff KK, Fielding LA, Brodl MR (1996) Effect gibberellin and heat shock on the lipid composition of endoplasmic reticulum in barley aleurone layers. Plant Physiol 110:571–581

    PubMed  CAS  Google Scholar 

  • Heilmann I, Mekhedov S, King B, Browse J, Shanklin J (2004) Identification of the Arabidopsis palmitoy-monogalactosyldiacylglycerol Δ-7 desaturase gene FAD5, and effects of plastidial retargeting of Arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol 136:4237–4245

    Article  PubMed  CAS  Google Scholar 

  • Hobbs DH, Flintham JE, Hills MJ (2004) Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiol 136:3341–3349

    Article  PubMed  CAS  Google Scholar 

  • Houston NL, Hajduch M, Thelen JJ (2009) Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol 151:857–868

    Article  PubMed  CAS  Google Scholar 

  • King KE, Moritz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776

    PubMed  CAS  Google Scholar 

  • Livak JK, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Martz F, Sutinen M, Kiviniemi S, Palta JP (2006) Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation. Tree Physiol 26:783–790

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant cell 8:403–416

    PubMed  CAS  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Kunst L (1999) The natural genetic variation of the fatty-acyl composition of seed oils in different ecotypes of Arabidopsis thaliana. Phytochemistry 52:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Mu JY, Tan HL, Zheng Q, Fu FY, Liang Y, Zhang J, Yang XH, Wang T, Chong K, Wang XJ, Zuo JR (2008) LEAF COTYLEDON 1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    Article  PubMed  CAS  Google Scholar 

  • O’Neill CMO, Gill S, Hobbs D, Morgan C, Bancroft I (2003) Natural variation for seed oil composition in Arabidopsis thaliana. Phytochemistry 64:1077–1090

    Article  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    PubMed  CAS  Google Scholar 

  • Palta JP, Whitaker BD, Weiss LS (1993) Plasma membrane lipids associated genetic variability in freezing tolerance and acclimation of Solanum Species. Plant Physiol 103:793–803

    PubMed  CAS  Google Scholar 

  • Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Gene Dev 11:3194–3205

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Ventre G, Caldelari D (1999) Increased flow of fatty acid toward β-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol 121:1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Xin Z, Browse J (1997) Overexpression of the FAD3 desatrase gene in a mutant of Arabidopsis. Plant Physiol 114:1533–1539

    Article  PubMed  CAS  Google Scholar 

  • Silverstone A, Ciampaglio C, Sun T (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169

    PubMed  CAS  Google Scholar 

  • Thomison PR, Geyer AB, Lotz LD, Siegrist HJ, Dobbels TL (2003) Topcross high oil corn production: select grain quality attributes. Agron J 95:147–154

    Article  Google Scholar 

  • Triantaphylidès C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  PubMed  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible W (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1986) Characterization of 12-oxo-phytodienoic acid reductase in corn: the josmanic pathway. Plant Physiol 80:202–205

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  PubMed  CAS  Google Scholar 

  • Wathes DC, Robert D, Abayasekara E, Aitken RJ (2007) Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 77:190–201

    Article  PubMed  CAS  Google Scholar 

  • Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, Maier A (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF 1A gibberellin receptor of Arabidopsis. Plant Cell 19:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi Y, Takeda-Kamiya N, Hanada A, Ogawa M, Kuwahara A, Seo M, Kamiya Y, Yamaguchi S (2007) Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark imbibed Arabidopsis thaliana seeds. Plant Cell Physiol 48:555–561

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz M (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Nat Acad Sci USA 101:7827–7832

    Article  PubMed  CAS  Google Scholar 

  • Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Plant Cell 98:12832–12836

    CAS  Google Scholar 

  • Zheljazkov VD, Vick BA, Baldwin BS, Buehring N, Astatkie T, Johnson B (2009) Oil content and saturated fatty acids in sunflower as a function of planting date, nitrogen rate, and hybrid. Agron J 101:1003–1011

    Article  CAS  Google Scholar 

  • Zhuang H, Hamilton-Kemp TR, Andersen RA, Hildebrand DF (1996) The impact of alteration of polyunsaturated fatty acid levels on C6-aldehyde formation of Arabidopsis thaliana leaves. Plant Physiol 111:805–812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of our lab was supported by the Natural Science Foundation of China (Grant no. 31171463) and Zhejiang Province (Grant no. Z3100130 and LY12C13006), and the Special Grand National Science and Technology Project (Grant no. 2009ZX08009-076B). We thank Prof. Jinrong Peng for providing us the DELLA mutants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuijin Hua or Lixi Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Jiang, Y., Hua, S. et al. Characterization of seed fatty acid accumulation in DELLA mutant lines of Arabidopsis. Plant Growth Regul 70, 27–37 (2013). https://doi.org/10.1007/s10725-012-9775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9775-2

Keywords

Navigation