Skip to main content
Log in

Identification of four Eucalyptus genes potentially involved in cell wall biosynthesis and evolutionarily related to SHINE transcription factors

  • Brief communication
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Recently, a new Arabidopsis thaliana master regulator of plant cell wall biosynthesis was characterized. It was named SHINE transcription factor (SHINE TF). This work searched for homologous genes in Eucalyptus grandis genome draft. RNAseq data, phylogeny analysis and qRT-PCR experiments were performed to complement SHINE gene analysis. By similarity searches using A. thaliana SHINE genes, four sequences were identified in Eucalyptus. Two of them contain all conserved motifs and characteristic features of this family, being assumed as true SHINE TFs and named EgrSHN1 and EgrSHN2. The other two sequences contain an incomplete ‘mm’ motif and were not considered true SHINE TFs, being further referred as Egr33m and Egr40m. Expression analysis revealed that EgrSHN1 is more expressed in flowers than in leaves and immature xylem, and both EgrSHN1 and EgrSHN2 are absent from adult xylem RNAseq libraries. This expression profile is similar to A. thaliana orthologues. On the other hand, Egr33m and Egr40m expression was detected in adult xylems. The phylogenetic studies indicate that both EgrSHNs were originated by gene duplication events which, together with gene loss, are hypothesized as common events in SHINE evolution. In conclusion, it is possible that the overexpression of SHINE genes in Eucalyptus xylem can generate information about wood formation processes, allowing an effective increase in forest plantation productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aharoni A, Dixit S, Jetter R, Thoenes E, Arkel GV, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant cell 16:2463–2480. doi:10.1105/tpc.104.022897

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Dixit C, Pereira A (2009) Shine clade of transcription factors and their use. United States Patent Application Publication No US20090300790. http://www.faqs.org/patents/app/20090300790#b. Accessed 3 Mar 2012

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ambavaram MMR, Krishnan A, Trijatmiko KR, Pereira A (2010) Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiol 155:916–931. doi:10.1104/pp.110.168641

    Article  PubMed  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162. doi:10.1105/tpc.106.044495

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci 101:4706–4710. doi:10.1073/pnas.0305574101

    Article  PubMed  CAS  Google Scholar 

  • Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12(2):64–70. doi:10.1016/j.tplants.2006.12.006

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3–14. doi:10.1007/s00709-010-0142-8

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567. doi:10.1111/j.1365-313X.2005.02480.x

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929. doi:10.1111/j.1469-8137.2008.02503.x

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of phyml 3.0. Syst Biol 59(3):307–321. doi:10.1093/sysbio/syq010

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282. doi:10.1093/bioinformatics/8.3.275

    PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  PubMed  CAS  Google Scholar 

  • Legay S, Lacombe E, Goicoechea M, Briere C, Seguin A, Mackay J, Grimapettenati J (2007) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. Plant Sci 173:542–549. doi:10.1111/j.1469-8137.2010.03432.x

    Article  CAS  Google Scholar 

  • Lepikson-Neto J, Camargo ELO, Salazar MM, Nascimento LC, Carazzolle, MF, Teixeira PJ, Marques WL, Deckmann AC, Pereira GAG. Influence of flavonoid supplementation on Eucalyptus urograndis gene expression (in preparation)

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280. doi:10.1105/tpc.106.047043

    Article  PubMed  CAS  Google Scholar 

  • Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA (2010) De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 11:681. doi:10.1186/1471-2164-11-681

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Ramírez M, Rodríguez J, Balocchi J, Peredo M, Elissetche JP, Mendonça R, Valenzuela S (2009) Chemical composition and wood anatomy of Eucalyptus globulus clones: variations and relationships with pulpability and hands heet properties. J Wood Chem Tech 29:43–58. doi:10.1080/02773810802607559

    Article  Google Scholar 

  • Salazar MM, Nascimento LC, Camargo ELO, Gonçalves DC, Lepikson Neto J, Marques WL, Teixeira PJPL, Mondego JMC, Carazzole MF, Deckmann AC, Pereira GAG. Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species (in submission)

  • Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB, Schreiber L, Aharoni A (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of arabidopsis flower organs. PLoS Genet 7:e1001388. doi:10.1371/journal.pgen.1001388

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

  • Tuskan G, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi:10.1126/science.1128691

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Yang T (2002) RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol Biol Rep 20:417a–417e. doi:10.1007/BF02772130

    Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170. doi:10.1105/tpc.106.047399

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266. doi:10.1105/tpc.108.063321

    Article  PubMed  CAS  Google Scholar 

  • Zhuang J, Cai B, Peng R-H, Zhu B, Jin X-F, Xue Y, Gao F, Fu X-Y, Tian Y-S, Zhao W, Qiao Y-S, Zhang Z, Xiong A-S, Yao Q-H (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun 371:468–474. doi:10.1016/j.bbrc.2008.04.087

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by International Paper do Brazil Ltda., which offered financial contribution and supplied this research with plant materials. The authors wish to thank Professor Andy Pereira, Ph.D (University of Arkansas; Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University) due to his contribution in experimental design; Dr. Jorge M. Mondego (Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas) and Dr. Ana C. Deckmann (Faculdade de Engenharia Química, Universidade Estadual de Campinas) for their valuable collaboration in the revision of this work. The four EgrSHNs sequence data were verified and completed using the unpublished Eucalyptus grandis genomic data available in “Eucalyptus grandis Genome Project 2010” (http://www.phytozome.net/eucalyptus), with the permission of Dr. Zander Myburg and his colleagues following the instructions detailed at http://www.phytozome.net/eucalyptus.php.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Amarante Guimarães Pereira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1042kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, W.L., Salazar, M.M., Camargo, E.L.O. et al. Identification of four Eucalyptus genes potentially involved in cell wall biosynthesis and evolutionarily related to SHINE transcription factors. Plant Growth Regul 69, 203–208 (2013). https://doi.org/10.1007/s10725-012-9754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9754-7

Keywords

Navigation