Skip to main content
Log in

Biochar successfully replaces activated charcoal for in vitro culture of two white poplar clones reducing ethylene concentration

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Biochar (BC) is a carbon rich product resulting from the biomass pyrolysis process and there have been no reports until now on BC effects in tissue cultures as a suitable substitute for activated charcoal (AC). The results of an experiment on two clones of white poplar (Populus alba L.) grown in culture media with different amounts of BC (0, 0.5 and 1.5 g/dm3) showed that its addition did not damage the plants and there were no significant differences comparing the data obtained for the same concentrations of AC. Both BC and AC addition was shown to increase root dry biomass and number of roots per shoot and these effects appeared to be independent of genotype and concentrations of the added products. A greater elongation was also recorded for shoots grown on a substrate containing BC than those grown on media without BC. These effects did not seem to be caused by darkening due to the addition of BC as there are no significant differences between the temperatures of the different culture media, but are probably due to the adsorption of molecules such as ethylene. Indeed, during the experiment, the hormone concentration in the atmosphere was lower in vials containing the media with BC than the BC-free ones after 14 and 21 days: the lower amount of ethylene in the medium with BC could explain the difference in shoot elongation and the abundant root biomass since high ethylene concentration could inhibit organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

BC:

Biochar

QRC:

Querce clone

VIL:

Villafranca clone

WPM:

Woody plant medium

References

  • Abeles FB, Morgan PW, Saltveit ME, Mikal E (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Anagnostakis SL (1974) Haploid plants from anthers of tobacco-enhancement with charcoal. Planta 115:281–283

    Article  Google Scholar 

  • Andrade GM, Merkle SA (2005) Enhancement of American chestnut somatic seedling production. Plant Cell Rep 24:326–334

    Article  PubMed  CAS  Google Scholar 

  • Anoardo E, Galli G, Ferrante G (2001) Fast-field-cycling NMR: applications and instrumentation. Appl Magn Reson 20:365–404

    Article  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Baronti S, Alberti G, Delle Vedove G, Di Gennaro F, Fellet G, Genesio L, Miglietta F, Peressotti A, Vaccari FP (2010) The biochar option to improve plant yields: first results from some field and pot experiments in Italy. Ital J Agron 5:3–11

    Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480

    Article  PubMed  CAS  Google Scholar 

  • Blackwell P, Riethmuller G, Collins M (2009) Biochar application to soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 207–226

    Google Scholar 

  • Bon M-C, Gendraud M, Franclet A (1988) Roles of phenolic compounds on micropropagation of juvenile and mature clones of Sequoiadendron giganteum: influence of activated charcoal. Sci Hort 34:283–291

    Article  CAS  Google Scholar 

  • Borchard N, Prost K, Kautz T, Moeller A, Siemens J (2012) Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure. Eur J Soil Sci 63(3):399–409

    Article  Google Scholar 

  • Buchheim JA, Colburn SM, Ranch JP (1989) Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol 89:768–775

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43(9):3285–3291

    Article  PubMed  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tiss Org 72:109–138

    Article  CAS  Google Scholar 

  • De Pasquale C, Marsala V, Berns AE, Valagussa M, Pozzi A, Alonzo G, Conte P (2012) Fast field cycling NMR relaxometry characterization of biochars obtained from an industrial thermochemical process. J Soils Sediments 12(8):1211–1221

    Google Scholar 

  • Dumas E, Monteuuis O (1995) In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants—influence of activated charcoal. Plant Cell Tiss Org 40:231–235

    Article  Google Scholar 

  • El-Hendawy AA, Samra SE, Girgis BS (2001) Adsorption characteristics of activated carbons obtained from corncobs. Colloid Surf A 180:209–221

    Article  CAS  Google Scholar 

  • Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tiss Org 84:1–16

    Article  Google Scholar 

  • Fridborg G, Eriksson T (1975) Effects of activated charcoal on growth and morphogenesis in cell cultures. Physiol Plant 34:306–308

    Article  Google Scholar 

  • Fridborg G, Pedersén M, Landström L-E, Eriksson T (1978) The effect of activated charcoal on tissue cultures: adsorption of metabolites inhibiting morphogenesis. Physiol Plant 43:104–106

    Article  CAS  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Guerro M, Ruzi MP, Alzuet MU, Bilbao R, Miller A (2005) Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. J Anal Appl Pyrolysis 74:307–314

    Article  Google Scholar 

  • Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  Google Scholar 

  • Hale SE, Hanley K, Lehmann J, Zimmerman A, Cornelissen G (2011) Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ Sci Technol 45(24):10445–10453

    Article  PubMed  CAS  Google Scholar 

  • Hemphill JK, Maier CGA, Chapman KD (1998) Rapid in vitro plant regeneration of cotton (Gossypium hirsutum L.). Plant Cell Rep 17:273–278

    Article  CAS  Google Scholar 

  • Horner M, McComb JA, McComb AJ, Street HE (1977) Ethylene production and plantlet formation by Nicotiana anthers cultured in the presence and absence of charcoal. J Exp Bot 28:1365–1372

    Article  CAS  Google Scholar 

  • Johansson L (1983) Effects of activated charcoal in anther cultures. Physiol Plant 59:397–403

    Article  CAS  Google Scholar 

  • Johansson L (1986) Improved methods for induction of embryogenesis in anther cultures of Solanum tuberosum. Potato Res 29:179–190

    Article  Google Scholar 

  • Johansson L, Eriksson T (1977) Induced embryo formation in anther culture of several Anemone species. Physiol Plant 40:172–174

    Article  Google Scholar 

  • Johansson L, Andersson B, Eriksson T (1982) Improvement of anther culture technique: activated charcoal bound in agar medium in combination with liquid medium and elevated CO2 concentration. Physiol Plant 54:24–30

    Article  Google Scholar 

  • Johansson L, Calleberg E, Gedin A (1990) Correlations between activated charcoal, Fe-EDTA and other organic media ingredients in cultured anthers of Anemone canadensis. Physiol Plant 80:243–249

    Article  CAS  Google Scholar 

  • Joy RW, Kumar PP, Thorpe TA (1991) Long-term storage of somatic embryogenic white spruce tissue at ambient temperature. Plant Cell Tiss Org 25:53–60

    Article  Google Scholar 

  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kookana RS (2010) The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Aust J Soil Res 48(7):627–637

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219

    Article  CAS  Google Scholar 

  • Laura M, Safaverdi G, Allavena A (2006) Androgenetic plants of Anemone coronaria derived through anther culture. Plant Breeding 125:629–634

    Article  CAS  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Lehmann J, Rondon M (2006) Biochar soil management on highly weathered soils in the humid tropics. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530

    Chapter  Google Scholar 

  • Lehmann J, Da Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Skjemstad JO, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull E (2008) Australian climate-carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizão FJ, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Ac 72:6078–6096

    Google Scholar 

  • Lloyd G, McCown BH (1980) Commercially feasible micropropagation of mountain laurel Kalmia latifolia by use of shoot-tip culture. Comb Proc Int Plant Propag Soc 30:421–427

    Google Scholar 

  • Loc NH, Duc DT, Kwon TH, Yang MS (2005) Micropropagation of zedoary (Curcuma zedoaria Roscoe)—a valuable medicinal plant. Plant Cell Tiss Org 81:119–122

    Article  CAS  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16(4):1366–1379

    Article  Google Scholar 

  • Mensuali-Sodi A, Panizza M, Serra G, Tognoni F (1993) Involvement of activated charcoal in the modulation of abiotic and biotic ethylene levels in tissue-cultures. Sci Hortic 54:49–57

    Article  CAS  Google Scholar 

  • Miller RO (1998) Nitric-perchloric acid digestion in an open vessel. In: Kalra YP (ed) Handbook of reference methods for plant analysis. CRC Press, New York, pp 57–61

    Google Scholar 

  • Misson JP, Boxus P, Coumans M, Giot-Wirgot P, Gaspar T (1983) Rôle du charbon de bois dans les milieux de culture de tissus végétaux. Med Fac Landbouww Rijksuniv Gent 48:1151–1157

    CAS  Google Scholar 

  • Mohamed-Yasseen Y (1994) Application of charcoal in horticulture. Tropical Fruit News 28:7

    Google Scholar 

  • Mohamed-Yasseen Y (2001) Influence of agar and activated charcoal on uptake of gibberellin and plant morphogenesis in vitro. In Vitro Cell Dev Biol Plant 37:204–205

  • Mohamed-Yasseen Y, Barringer SA, Schloupt RM, Splittstoesser WE (1995) Activated charcoal in tissue culture: an overview. PGRSA Q 23:206–213

    Google Scholar 

  • Noguera D, Rondon M, Laossi KR, Hoyos V, Lavelle P, Cruz de Carvalho MH, Barot S (2010) Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol Biochem 42:1017–1027

    Article  CAS  Google Scholar 

  • Nomizu T, Niimi Y, Han DS (2004) Haploid plant regeneration via embryogenesis from anther cultures of Hepatica nobilis. Plant Cell Tiss Org 79:307–313

    Article  Google Scholar 

  • Oleszczuk P, Hale SE, Lehmann J, Cornelissen G (2012) Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresource Technol 111:84–91

    Article  CAS  Google Scholar 

  • Pan MJ, Van Staden J (1998) The use of charcoal in in vitro culture—a review. Plant Growth Regul 26:155–163

    Google Scholar 

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    Article  CAS  Google Scholar 

  • Peck DE, Cumming BG (1986) Beneficial effects of activated charcoal on bulblet production in tissue cultures of Muscari armeniacum. Plant Cell Tiss Org 6:9–14

    Article  CAS  Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fert Soils 43:699–708

    Article  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Sensöz S (2003) Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions. Biores Technol 89:307–311

    Article  Google Scholar 

  • Simms EL, Rausher MD (1987) Costs and benefits of plant resistance to herbivory. Am Nat 130:570–581

    Article  Google Scholar 

  • Sinclair K, Slavich P, van Zwieten L, Downie A (2008) Productivity and nutrient availability on a Ferrosol: biochar, lime and fertiliser. In: Proceedings of the Australian Society of Agronomy Conference, Adelaide

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42(12):2345–2347

    Article  CAS  Google Scholar 

  • Song Y, Wang F, Bian Y, Kengara FO, Jia M, Xie Z, Jiang X (2012) Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J Hazard Mater 217–218:391–397

    Google Scholar 

  • Sopeña F, Semple K, Sohi S, Bending G (2012) Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 88(1):77–83

    Article  PubMed  Google Scholar 

  • Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443–452

    Article  CAS  Google Scholar 

  • Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, Dusaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85:869–882

    Article  PubMed  CAS  Google Scholar 

  • Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

    Article  CAS  Google Scholar 

  • Sul III-W, Korban SS (2004) Effects of salt formulations, carbon sources, cytokinins, and auxin on shoot organogenesis from cotyledons of Pinus pinea L. Plant Growth Regul 43:197–205

    Article  CAS  Google Scholar 

  • Sul III-W, Korban SS (2005) Direct shoot organogenesis from needles of three genotypes of Sequoia sempervirens. Plant Cell Tiss Org 80:353–358

    Article  CAS  Google Scholar 

  • Sun K, Keiluweit M, Kleber M, Pan Z, Xing B (2011a) Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technol 102:9897–9903

    Article  CAS  Google Scholar 

  • Sun K, Ro K, Guo M, Novak J, Mashayekhi H, Xing B (2011b) Sorption of bisphenol A, 17a-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technol 102:5757–5763

    Article  CAS  Google Scholar 

  • Sun K, Gao B, Ro KS, Novak JM, Wang Z, Herbert S, Xing B (2012a) Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environ Pollut 163:167–173

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Hockaday WC, Masiello CA, Zygourakis K (2012b) Multiple controls on the chemical and physical structure of biochars. Ind Eng Chem Res 51:3587–3597

    Article  CAS  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  PubMed  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59(6):2501–2510

    Article  PubMed  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Boddu VM (2012) Sorption of triazine and organophosphorus pesticides on soil and biochar. J Agric Food Chem 60(12):2989–2997

    Article  PubMed  CAS  Google Scholar 

  • USEPA (1995) Microwave assisted acid digestion of siliceous and organically based matrices. In: US environmental protection agency (ed) Test methods for evaluating solid waste. Washington, http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3052.pdf

  • Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Sinclair K, Chan KY, Downie A (2008) Biochar: potential for climate change mitigation, improved yield and soil health. In: Proceedings of the New South Wales Grassland Conference, Tamworth

  • Vishnevetsky J, Zamski E, Ziv M (2003) Enhanced bud and bulblet regeneration from bulbs of Nerine sarniensis cultured in vitro. Plant Cell Rep 21:645–650

    PubMed  CAS  Google Scholar 

  • Wang H, Lin K, Hou Z, Richardson B, Gan J (2010) Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J Soils Sediments 10:283–289

    Article  CAS  Google Scholar 

  • Weatherhead MA, Burdon J, Henshaw GG (1978) Some effects of activated charcoal as an additive to plant tissue culture media. Z Pflanzenphysiol 89:l41–147

    Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  PubMed  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra. Indonesia Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Zaghmout OMF, Torello WA (1988) Enhanced regeneration in long-term callus cultures of red fescue by pretreatment with activated charcoal. HortScience 23:615–616

    Google Scholar 

  • Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag M, Ryu C-M, Allen R, Melo I, Paré P (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  PubMed  CAS  Google Scholar 

  • Zouine J, El Bellaj M, Meddich A, Verdeil JL, Hadrami IE (2005) Proliferation and germination of somatic embryos from embryogenic suspension cultures in Phoenix dactylifera. Plant Cell Tiss Org 82:83–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to sincerely thank Dr. Carla Benelli, Dr. Anna De Carlo and Dr. Elif Aylin Ozudogru from the Trees and Timber Institute of the National Research Council (IVALSA-CNR) for their personal support and valuable technical assistance for ethylene analysis. We owe special thanks to Dr. Luisa Andrenelli and Dr. Adriano Pasqualino Baglio for biochar and activated charcoal analysis. This research was supported by the EuroChar project (FP7-ENV-2010 ID-265179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Di Lonardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Lonardo, S., Vaccari, F.P., Baronti, S. et al. Biochar successfully replaces activated charcoal for in vitro culture of two white poplar clones reducing ethylene concentration. Plant Growth Regul 69, 43–50 (2013). https://doi.org/10.1007/s10725-012-9745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9745-8

Keywords

Navigation