Skip to main content
Log in

Understanding the effect of organic pollutant fluoranthene on pea in vitro using cytokinins, ethylene, ethane and carbon dioxide as indicators

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Environmental contaminants like polycyclic aromatic hydrocarbons can influence many biochemical and physiological processes in plants. The effect of 0.1, 1 and 5 mg l−1 of fluoranthene (FLT) in combination with indole-3-acetic acid (IAA, 0.1 mg l−1) or a combination of IAA and N6-benzyladenine (BA, both 0.1 mg l−1) on the growth and production of ethylene, ethane and CO2 in Pisum sativum L. cultivated for 21 days in vitro was investigated. In 21 days old plants also net photosynthesis rate, content of FLT and cytokinins were evaluated. FLT 5 mg l−1 significantly inhibited the growth of pea after 21 days in both IAA and IAA + BA treatments, increased production of ethylene (by 11% in IAA and 14% in IAA + BA treatments, respectively) and ethane (by 28 and 18%) and decreased production of CO2 (by 23 and 29%). The net photosynthesis rate decreased in response to FLT concentration by up to 51% under saturating irradiation (600–1,200 μmol m−2 s−1), as found in IAA + BA + FLT 5 mg l−1 treatment. The content of FLT in pea plant shoots well correlated with increasing FLT treatment in both IAA and IAA + BA medium. The content of cytokinins in pea shoots changed in response to FLT treatment. FLT 5 mg l−1 caused a rise in level of trans-zeatin (by 16% in IAA and 9% in IAA + BA treatments, respectively), dihydrozeatin riboside (by 27 and 50%), benzyladenine (by 3 and 80%), benzyladenine riboside (by 44 and 17%) and meta-topolin riboside (by 139 and 214%), no change in isopentenyladenine level and a decrease in meta-topolin level (by 33% in IAA and 36% in IAA + BA treatments, respectively). Cultivation of plants in vitro allowed not only to assess their growth, photosynthetic activity and the level of cytokinins, but also to extend the knowledge about the effect of PAHs on production of gaseous stress indicators like ethylene, ethane and CO2. Recorded changes in all studied parameters show, that persistent organic pollutants like PAHs can negatively influence plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

BA:

N6-benzyladenine

BAR:

Benzyladenine riboside

BCF:

Bioconcentration factor

C2H4 :

Ethylene

C2H6 :

Ethane

CO2 :

Carbon dioxide

DHZR:

Dihydrozeatin riboside

ELISA:

Enzyme-linked immunosorbent assay

FLT:

Fluoranthene

FP-H2O:

Ultrafiltered water

GC-FID:

Flame-ionisation detector–gas chromatograph

GC-MS:

Gas chromatograph-mass spectrometry

IAA:

Indole-3-acetic acid

Ic:

Compensative irradiation

iP:

Isopentenyladenine

MS:

Murashige and Skoog’s medium

mT:

meta-topolin

mTR:

meta-topolin riboside

PAH:

Polycyclic aromatic hydrocarbon

PAR:

Photosynthetic active radiation

Pn:

Net photosynthetic rate

PPFD:

Photosynthetic photon flux density

TFA:

Trifluoroacetic acid

Z, t-Z:

trans-zeatin

References

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the coversion of methionine to ethylene. Biochemistry 76:170–174

    CAS  Google Scholar 

  • Alkio M, Tabuchi TM, Wang XC, Colon-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56:2983–2994

    Article  CAS  PubMed  Google Scholar 

  • Alsalihy AW, Křižan B, Klemš M, Fišerová H, Hradilík J (2004) The effect of growth regulators on the rooting of shoots of the peach rootstock Ishtara in in vitro conditions. Hortscience (Prague) 31:124–131

    Google Scholar 

  • Atanassova L, Pissarska M, Stoyanov I (1996) Cytokinins and growth responses of maize and pea plants to salt stress. Bulg J Plant Physiol 22:22–31

    CAS  Google Scholar 

  • Balen B, Tkalec M, Pavokovic D, Pevalek-Kozlina B, Krsnik-Rasol M (2009) Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. J Plant Growth Regul 28:36–45

    Article  CAS  Google Scholar 

  • Bieleski RL (1964) The problem of halting enzyme action when extracting plant tissue. Anal Biochem 9:431–442

    Article  CAS  PubMed  Google Scholar 

  • Binet Ph, Portal JM, Leyval C (2000) Fate of polyaromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant Soil 227:207–213

    Article  CAS  Google Scholar 

  • Branquinho C, Brown DH, Catarino F (1997) The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ Exp Bot 38:165–179

    Article  CAS  Google Scholar 

  • Celikel FG, Vandoorn WG (1995) Solute leakage lipid-peroxidation and protein-degradation during the senescence of Iris tepals. Physiol Plantarum 94:515–521

    Article  CAS  Google Scholar 

  • Chiang P, Li K-P, Hseu T-M (1996) Spectrochemical behavior of carcinogenic polycyclic aromatic hydrocarbons in biological systems. Part II: A theoretical rate model for BaP metabolism in living cells. Appl Spectrosc 50:1352–1359

    Article  CAS  Google Scholar 

  • Chrominski A, Khan MA, Weber DJ, Smith BN (1986) Ethylene and ethane production in response to salinity stress. Plant Cell Environ 9:687–691

    Article  CAS  Google Scholar 

  • Collier MD, Sheppard LJ, Crossley A, Hanke DE (2003) Needle cytokinin content as a sensitive bioindicator of N pollution in Sitka spruce. Plant Cell Environ 26:1929–1939

    Article  CAS  Google Scholar 

  • da Silva EC, Nogueira RJMC, de Araújo FP, de Melo NF, de Azevedo Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157

    Article  CAS  Google Scholar 

  • Debiane D, Garcon G, Verdin A, Fontaine J, Durand R, Grandmougin-Ferjani A, Shirali P, Sahraoui AL-H (2008) In vitro evaluation of the oxidative stress and genotoxic potentials of anthracene on mycorrhizal chicory roots. Environ Exp Bot 64:120–127

    Article  CAS  Google Scholar 

  • Delgado E, Driscoll SP, Mitchel RAC, Lawlor DW (1992) Leaf photosynthesis and respiration of high CO2-grow tobacco plants selected for survival under CO2 compensation point conditions. Plant Physiol 98:949–954

    Article  CAS  PubMed  Google Scholar 

  • Fišerová H, Hradilík J (1996) Ethylene and ethane production by vine callus culture. Rostlinná výroba 42:517–521

    Google Scholar 

  • Fišerová H, Šebánek J, Hradilík J, Doležel P, Vítková H (2006) Role of cytokinins in growth correlation between roots and stems in pea (Pisum sativum L.) seedlings. Plant Soil Environ 52:159–163

    Google Scholar 

  • Fletcher JS, McFarlane JC, Pfleeger T, Wickliff C (1990) Influence of root exposure concentration on the fate of nitrobenzene in soybean. Chemosphere 20:513–523

    Article  CAS  Google Scholar 

  • Genkov T, Tsoneva P, Ivanova I (1997) Effect of cytokinins on photosynthetic pigments and chlorophyllase activity in in vitro cultures of axillary buds of Dianthus caryophyllus L. J Plant Growth Regul 16:169–172

    Article  CAS  Google Scholar 

  • George EF (1996) Plant propagation by tissue culture. Part 2. The practice, 2nd edn. Exegetics Ltd., Edington

    Google Scholar 

  • Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants—from biomolecules to ecosystems. Spinger, Berlin, pp 1–27

    Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Holoubek I, Kořínek P, Šeda Z, Schneiderová E, Holoubková I, Pacl A, Tříska J, Cudlín P, Čáslavský J (2000) The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Pollut 109:283–292

    Article  CAS  PubMed  Google Scholar 

  • Huang X-D, Zeiler LF, Dixon DG, Greenberg BM (1996) Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (canola) and Cucumis sativus (cucumber) in simulated solar radiation. Ecotox Environ Safe 35:190–197

    Article  CAS  Google Scholar 

  • Huang X-D, McConkey BJ, Babu TS, Greenberg BM (1997) Mechanisms of photoinduced toxicity of photomodified anthracene to plants: inhibition of photosynthesis in the aquatic higher plant Lemna gibba (duckweed). Environ Toxicol Chem 16:1707–1715

    CAS  Google Scholar 

  • Konieczny R, Kępczyński J, Pilarska M, Cembrowska D, Menzel D, Šamaj J (2009) Cytokinin and ethylene affect auxin transport-dependent rhizogenesis in hypocotyls of common ice plant (Mesembryanthemum crystallinum L.). J Plant Growth Regul 28:331–340

    Article  CAS  Google Scholar 

  • Kummerová M, Kmentová E (2004) Photoinduced toxicity of fluoranthene on germination and early development of plant seedling. Chemosphere 56:387–393

    Article  PubMed  CAS  Google Scholar 

  • Kummerová M, Gloser J, Slovák L, Holoubek I (1996) Project TOCOEN. The fate of selected organic compounds in the environment. The growth response of maize to increasing concentration of fluoranthene. Toxicol Environ Chem 54:99–106

    Article  Google Scholar 

  • Kummerová M, Kmentová E, Koptíková J (2001) Effect of fluoranthene on growth and primary processes of photosynthesis in faba bean and sunflower. Rostlinná výroba 47:344–351

    Google Scholar 

  • Kummerová M, Barták M, Dubová J, Tříska J, Zubrová E, Zezulka Š (2006a) Inhibitory effect of fluoranthene on photosynthetic processes in lichens detected by chlorophyll fluorescence. Ecotoxicology 15:121–131

    Article  PubMed  CAS  Google Scholar 

  • Kummerová M, Krulová J, Zezulka Š, Tříska J (2006b) Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence. Chemosphere 65:489–496

    Article  PubMed  CAS  Google Scholar 

  • Kummerová M, Váňová L, Krulová J, Zezulka Š (2008) The use of physiological characteristics for comparison of organic compounds phytotoxicity. Chemosphere 71:2050–2059

    Article  PubMed  CAS  Google Scholar 

  • Lexa M, Genkov T, Malbeck J, Macháčková I, Brzobohatý B (2003) Dynamics of endogenous cytokinin pools in tobacco seedlings: a modelling approach. Ann Bot London 91:585–597

    Article  CAS  Google Scholar 

  • Macháčková I, Krekule J, Eder J, Seidlová F, Strnad M (1993) Cytokinins in photoperiodic induction of flowering in Chenopodium species. Physiol Plantarum 87:160–166

    Article  Google Scholar 

  • Massot N, Barselo J, Poschenrieder C (1994) Influence of aluminium toxicity on cytokinins in bean plants. Biol Plantarum Proc FESPP meeting, p 197

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Phys 52:89–118

    Article  CAS  Google Scholar 

  • Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schmülling T (2003) Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plantarum 117:11–21

    Article  CAS  Google Scholar 

  • Munns R, Rawson HM (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Aust J Plant Physiol 26:459–465

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nyitrai P, Czövek P, Óvári M, Keresztes A (2009) Signaling mechanism mediating the anti-senescence effect of low concentration chemical stressors sprayed onto bean seedlings. Environ Exp Bot 66:501–506

    Article  CAS  Google Scholar 

  • Peiser GD, Yang SF (1979) Ethylene and ethane production from sulfur dioxide-injured plants. Plant Physiol 63:142–145

    Article  CAS  PubMed  Google Scholar 

  • Polder MD, Hulzebos EM, Jager DT (1995) Validation of models on uptake of organic chemicals by plant roots. Environ Toxicol Chem 14:1615–1623

    Article  CAS  Google Scholar 

  • Powell RL, Kimerle RA, Moser EM (1996) Development of a plant bioassay to assess toxicity of chemical stressors to emergent macrophytes. Environ Toxicol Chem 15:1570–1576

    Article  CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interaction between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  PubMed  Google Scholar 

  • Strnad M (1996) Enzyme immunoassays of N6-benzyladenine and N6-(meta-hydroxybenzyl)adenine cytokinins. J Plant Growth Regul 15:179–188

    Article  CAS  Google Scholar 

  • Strnad M, Vaněk T, Binarová P, Kamínek M, Hanuš J (1990) Enzyme immunoassays for cytokinins in alfalfa cell culture. In: Kutáček M, Elliot MC, Macháčková I (eds) Molecular aspects of hormonal regulation of plant development. SPB Academic Publishing, The Hague, pp 41–54

    Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van der Straeten D, Beemster GTS, Sandberg G, Bhalearo R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  CAS  PubMed  Google Scholar 

  • Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778

    Article  CAS  Google Scholar 

  • Váňová L, Kummerová M, Klemš M, Zezulka Š (2009) Fluoranthene influences endogenous abscisic acid level and primary photosynthetic processes in pea (Pisum sativum L.) plants in vitro. Plant Growth Regul 57:39–47

    Article  CAS  Google Scholar 

  • Vaseva-Gemisheva I, Lee D, Karanov E (2005) Response of Pisum sativum cytokinin oxidase/dehydrogenase expression and specific activity to drought stress and herbicide treatments. Plant Growth Regul 46:199–208

    Article  CAS  Google Scholar 

  • Von Schwartzenberg K, Lutze K, Hahn H (1988) Determination of cytokinins in needles of spruce (Picea abies [L.] Karst.) by indirect enzyme-linked immunosorbent assay. J Plant Physiol 133:529–534

    Google Scholar 

  • Wang W, Vinocur B, Shoseyour O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hortic 560:285–292

    CAS  Google Scholar 

  • Wang D, Chen J, Xu Z, Qiao XL, Huang LP (2005) Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine (Pinua thunbergii) needles under irradiation of sunlight: volatilization and photolysis. Atmos Environ 39:4583–4591

    Article  CAS  Google Scholar 

  • Wild SR, Jones KC (1992) Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge-amended soil. J Environ Qual 21:217–225

    Article  CAS  Google Scholar 

  • Zwoch I, Knorre U, Schaub H (1990) Influence of SO2 and O3, singly or in combination, on ethylene synthesis in sunflower. Environ Exp Bot 30:193–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Czech Science Foundation (GAČR 522/09/0239 and GAČR 522/09/P167). We thank to prof. Ing. Miroslav Strnad, CSc. from Palacký Univesity, Olomouc, Czech Republic, for providing the antibodies for ELISA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Váňová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kummerová, M., Váňová, L., Fišerová, H. et al. Understanding the effect of organic pollutant fluoranthene on pea in vitro using cytokinins, ethylene, ethane and carbon dioxide as indicators. Plant Growth Regul 61, 161–174 (2010). https://doi.org/10.1007/s10725-010-9462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9462-0

Keywords

Navigation