Skip to main content
Log in

Do stress-related phytohormones, abscisic acid and jasmonic acid play a role in the regulation of Medicago sativa L. somatic embryogenesis?

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

This study examined the role of endogenous abscisic acid (ABA) and jasmonic acid (JA) in indirect somatic embryogenesis of Medicago sativa L. A multiplex GC-MS/MS technique allowed quantitative single-run analyses of ABA, JA, 12-oxophytodienoic acid (OPDA) and indole-3-acetic acid (IAA). The preparation of initial explants led to a strong accumulation of ABA, JA and OPDA but not of IAA. Substantially higher levels of ABA, JA and OPDA were detected in developing somatic embryos than in callus or embryogenic suspension. Fluridone (FLD) decreased ABA, JA and OPDA levels. Indoprofen (INP) appeared to be a specific inhibitor of octadecanoid biosynthesis. Somatic embryo production and development were negatively affected by FLD or INP. Only INP (0.5 μM) applied during proliferation phase increased the number of cotyledonary embryos. The results strongly indicate the involvement of ABA and JA in somatic embryogenesis of M. sativa. Surprisingly, low IAA contents in comparison to stress-related compounds (ABA, JA and OPDA) were detected in explants, embryogenic tissues and somatic embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

FLD:

Fluridone

FW:

Fresh weight

GC-MS:

Gas chromatography coupled with mass spectrometry

IAA:

Indole-3-acetic acid

INP:

Indoprofen

JA:

Jasmonic acid

MeJA:

Methyl jasmonate

NAA:

α-Naphthaleneacetic acid

NSAIDs:

Non-steroidal anti-inflammatory drugs

OPDA:

12-Oxophytodienoic acid

PGR:

Plant growth regulator

PPFD:

Photosynthetic photon flux density

SE:

Somatic embryogenesis

References

  • Atanassov A, Brown DCW (1984) Plant regeneration from suspension cultures and mesophyll protoplasts of Medicago sativa L. Plant Cell Tissue Organ Cult 3:149–162

    Article  Google Scholar 

  • Bingham ET, Hurley LV, Kaatz DM, Saunders JW (1975) Breeding alfalfa which regenerates from callus tissue culture. Crop Sci 15:719–721

    Article  Google Scholar 

  • Creelman RA, Mullet JE (1997) Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell 9:1211–1223

    Article  PubMed  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Dudits D, Gyorgyey J, Bögre L, Bako L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 264–309

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Finkelstein RR, Rock CD (2002) Abscisic acid biosynthesis and response. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville. doi/10.1199/tab.0009. http://www.aspb.org/publications/arabidopsis/

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:148–151

    Article  Google Scholar 

  • Gawrońska H, Burza W, Bolesta E, Malepszy S (2000) Zygotic and somatic embryos of cucumber (Cucumis sativus L.) substantially differ in their levels of abscisic acid. Plant Sci 157:129–137

    Article  PubMed  Google Scholar 

  • Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C (2000) Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J 24:113–126

    Article  PubMed  CAS  Google Scholar 

  • Huong LTL, Baiocco M, Huy BP, Mezzetti B, Santilocchi R, Rosati P (1999) Somatic embryogenesis in Canary Island date palm. Plant Cell Tissue Organ Cult 56:1–7

    Article  Google Scholar 

  • Ivanova A, Velcheva M, Denchev P, Atanassov A, van Onckelen HA (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Biol Plant 92:85–89

    CAS  Google Scholar 

  • Jimenéz VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Kępczyński J, Florek I (1997) The influence of JA-ME and ABA on induction of somatic embryogenesis in Medicago sativa L. In: Ellis RH, Black M, Murdoch AJ, Hong TD (eds) Basic and applied aspects of seed biology. Kluwer, Dordrecht, pp 137–140

    Google Scholar 

  • Lecouteux CG, Lai FM, McKersie BD (1993) Maturation of alfalfa (Medicago sativa L.) somatic embryos by abscisic acid, sucrose and chilling stress. Plant Sci 94:207–213

    Article  CAS  Google Scholar 

  • McKersie BD, Senaratna T, Bowley SR, Brown DCW, Krochko F, Bewley JD (1989) Application of artificial seed technology in the production of hybrid alfalfa (Medicago sativa L.). In Vitro Cell Dev Biol 25P:1183–1188

    Article  Google Scholar 

  • Müller A, Düchting P, Weiler EW (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216:44–56

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Yasunori K, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  PubMed  CAS  Google Scholar 

  • Ortel B, Atzorn R, Hause B, Feussner I, Miersch O, Wasternack C (1999) Jasmonate-induced gene expression of barley (Hordeum vulgare) leaves—the link between jasmonate and abscisic acid. Plant Growth Regul 29:113–122

    Article  CAS  Google Scholar 

  • Pan Z, Camara B, Gardner HW, Backhaus RA (1998) Aspirin inhibition and acetylation of the plant cytochrome P450, allene oxide synthase, resembles that of animal prostaglandin endoperoxide H synthase. J Biol Chem 273:18139–18145

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran K, Vine J, Mullins MG (1982) Dormancy in somatic embryos and seeds of Vitis: changes in endogenous abscisic acid during embryogeny and germination. Planta 154:139–144

    Article  CAS  Google Scholar 

  • Rojas-Herrera R, Quiroz-Figueroa F, Sánchez-Teyer L, Loyola-Vargas VM (2002) Molecular analysis of somatic embryogenesis: an overview. Physiol Mol Biol Plants 8:171–184

    Google Scholar 

  • Ruduś I, Kępczyńska E, Kępczyński J (2001) The influence of the jasmonates and abscisic acid on callus growth and somatic embryogenesis in Medicago sativa L. tissue culture. Acta Physiol Plant 23:103–107

    Article  Google Scholar 

  • Ruduś I, Kępczyńska E, Kępczyński J, Wasternack C, Miersch O (2005) Changes in jasmonates and 12-oxophytodienoic acid contents of Medicago sativa L. during somatic embryogenesis. Acta Physiol Plant 27:497–504

    Article  Google Scholar 

  • Ruduś I, Kępczyńska E, Kępczyński J (2006) Comparative efficacy of abscisic acid and methyl jasmonate for indirect somatic embryogenesis in Medicago sativa L. Plant Growth Regul 48:1–11

    Article  CAS  Google Scholar 

  • Ruffoni B, Rabaglio M, Semeria L, Allavena A (1999) Improvement of micropropagation of Genista monosperma Lam. by abscisic acid treatment. Plant Cell Tissue Organ Cult 57:223–225

    Article  CAS  Google Scholar 

  • Senaratna T, McKersie BD, Bowley SR (1989) Desiccation tolerance in alfalfa (Medicago sativa L.). Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci 65:253–259

    Article  CAS  Google Scholar 

  • Senaratna T, McKersie BD, Bowley SR (1990) Artificial seeds of alfalfa (Medicago sativa L.). Induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev Biol 26:85–90

    Article  Google Scholar 

  • Senger S, Mock HP, Conrad U, Manteuffel R (2001) Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Rep 20:112–120

    Article  CAS  Google Scholar 

  • Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105

    Article  CAS  Google Scholar 

  • Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C (2003) Allene oxide cyclase dependance of the wound response and vascular bundle specific generation of jasmonate in tomato—amplification in wound-signalling. Plant J 33:577–589

    Article  PubMed  CAS  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed  CAS  Google Scholar 

  • Xu N, Bewley JD (1995) The role of abscisic acid in germination, storage protein synthesis and desiccation tolerance in alfalfa (Medicago sativa L.) seeds, as shown by inhibition of its synthesis by fluridone during development. J Exp Bot 46:687–694

    Article  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Dr. A. Müller for assistance with GC-MS analyses. This work was supported by a grant from the State Committee for Scientific Research (KBN), No 6 PO4C 048 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Ruduś.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruduś, I., Weiler, E.W. & Kępczyńska, E. Do stress-related phytohormones, abscisic acid and jasmonic acid play a role in the regulation of Medicago sativa L. somatic embryogenesis?. Plant Growth Regul 59, 159–169 (2009). https://doi.org/10.1007/s10725-009-9399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9399-3

Keywords

Navigation