Skip to main content
Log in

Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cytogenetic response of 24-epibrassinolide (EBR) and different NaCl concentrations (0.30, 0.35 and 0.40 M, molar) on root meristem cells of barley were analysed. Plants grown on media containing 0.30, 0.35 and 0.40 M NaCl showed a significant decrease of mitotic index and higher number of chromosomal abnormalities as compared to those of control conditions. Also, the mitotic index approximately 50% decreased in EBR- treated samples and chromosomal abnormalities almost tipled those of control. EBR pretreatment in higher concentrations of salt (0.40 M NaCl) caused total inhibition of mitotic activity in root-tip cells. However, comparison of all concentrations of salt and control revealed to have a successful performance in ameliorating of the detrimental effects of salinity on chromosomal abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33(2):151–153. doi:10.1023/A:1017590108484

    Article  CAS  Google Scholar 

  • Braun JW, Khan AA (1976) Alleviation of salinity and high temperature stress by plant growth regulators permeated into lettuce seeds via acetone. J Am Soc Hortic Sci 101:716–721

    CAS  Google Scholar 

  • Clouse SD, Zurek D (1991) Molecular analysis of brassinolide action in plant growth and development. In: Cutler HG, Yokota T, Adam G (eds) Brasinosteroids—chemistry, bioactivity and application. ACS Symposium Series 474. American Chemical Society, Washington, DC, pp 122–140

  • Çavuşoğlu K, Kabar K (2008) Bazı bitki büyüme düzenleyicilerinin tuzlu koşullar altındaki arpa tohumlarının çimlenmesi üzerindeki etkilerinin karşılaştırılması. Sci Eng J Firat Univ 20(1):43–55

    Google Scholar 

  • Dash M, Panda SK (2001) Salt stress induced changes in growth and enzyme activities in germinating Phaseolus muingo seeds. Biol Plant 44:587–589. doi:10.1023/A:1013750905746

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42. doi:10.2307/3001478

    Article  Google Scholar 

  • Fiskesjö G (1997) Allium test for screening chemicals; evaluation of cytological parameters. In: Wang W, Gorsuch JW, Hughes JS (eds) Plant for environmental studies. Lewis Publishers, New York, pp 308–333

    Google Scholar 

  • Grove MD, Spencer FG, Rohwededer WK, Mandava NB, Worley JF, Warthen JD Jr, Steffens GL, Flippen-Anderson JL, Cook JR Jr (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–222. doi:10.1038/281216a0

    Article  CAS  Google Scholar 

  • Howell WM, Keller GEIII, Kirkpatrick JD, Jenkins RL, Hunsinger RN, McLaughlin EW (2007) Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. Genet Mol Res 6(1):50–58

    PubMed  CAS  Google Scholar 

  • Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J 24:693–701. doi:10.1046/j.1365-313x.2000.00915.x

    Article  PubMed  CAS  Google Scholar 

  • Kabar K (1987) Alleviation of salinity stress by plant growth regulators on seed germination. J Plant Physiol 128:179–183

    CAS  Google Scholar 

  • Kamoro Y, Takatsuta S (1991) Capability for problems of practical uses of brassinosteroids. In: Culter HG, Yokota T, Adam G (eds) Brasinosteroids—chemistry, bioactivity and application. ACS Symposium Series 474. American Chemical Society, Washington, DC, pp 292–297

  • Katsumi M (1991) Physiological modes of brassinolide action in Cucumber hypocotyl growth. In: Culter HG, Yokota T, Adam G (eds) Brasinosteroids—chemistry, bioactivity and application. ACS Symposium Series 474, American Chemical Society, Washington, DC, pp 246–254

  • Kılıç S, Çavuşoğlu K, Kabar K (2007) Effects of 24-epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. SDU Fen-Edb Fak Fen Dergisi (E-Dergi) 2(1):41–52

    Google Scholar 

  • Mitchell JW, Mandava NB, Worley JF, Plimmer JR, Smith MV (1970) Brassin—a new family of plant hormones from rape pollen. Nature 225:1065–1066. doi:10.1038/2251065a0

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa Y, Nakajima N, Abe T, Sakai A (2003) Activation of cell proliferation by brassinolide application in tobacco BY-2 cells: effects of brassinolide on cell multiplication, cell-cycle-related gene expression and organellar DNA contents. J Exp Bot 54:2669–2678. doi:10.1093/jxb/erg312

    Article  PubMed  CAS  Google Scholar 

  • Oh MH, Clouse SD (1998) Brassinolide affects the rate of cell division in isolated leaf protoplasts of Petunia hybrida. Plant Cell Rep 17(12):921–924. doi:10.1007/s002990050510

    Article  CAS  Google Scholar 

  • Radić S, Prolić M, Pavlica M, Pevalek-Kozlina B (2005) Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L. Environ Exp Bot 54:213–218. doi:10.1016/j.envexpbot.2004.07.007

    Article  Google Scholar 

  • Roth PS, Bach TJ, Thompson MJ (1989) Brassinosteroids: potent inhibitors of transformed tobacco callus cultures. Plant Sci 59:63–70. doi:10.1016/0168-9452(89)90009-5

    Article  CAS  Google Scholar 

  • Sala C, Sala F (1985) Effect of brassinosteroid on cell division and enlargement in cultured carrot (Daucus carota L.) cells. Plant Cell Rep 4(3):144–147. doi:10.1007/BF00571302

    Article  CAS  Google Scholar 

  • Sasse JM, Smith R, Hudson I (1995) Effect of 24-epibrassinolide on germination of seeds of Eucalyptus camaldulensis in saline conditions. Proc Plant Growth Regul Soc Am 22:136–141

    Google Scholar 

  • Sharma PC, Gupta PK (1982) Karyotypes in some pulse crops. Nucleus 25:181–185

    Google Scholar 

  • Tajbakhsh M, Zhou MX, Chen ZH, Mendham NJ (2006) Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust J Exp Agric 46(4):555–562. doi:10.1071/EA05026

    Article  Google Scholar 

  • Wilen RW, Sacco M, Gusta LW, Krishna P (1995) Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromis inermis) cell cultures. Physiol Plant 95:195–202. doi:10.1111/j.1399-3054.1995.tb00827.x

    Article  CAS  Google Scholar 

  • Worley JF, Mitchhell JR (1971) Growth responses induced by brassins (fatty plant hormones) in bean plants. J Am Soc Hortic Sci 96:270–273

    CAS  Google Scholar 

  • Yokota T, Takahashi N (1985) Chemistry, physiology and agricultural application of brassinolide and related steroids. In: Bopp M (ed) Plant growth substances. Springer-Verlag, Berlin, pp 129–138

    Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Scientific Research Project Management of Süleyman Demirel University (SDUBAP) for the financial support by the project SDUBAP (1167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Tabur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabur, S., Demir, K. Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul 58, 119–123 (2009). https://doi.org/10.1007/s10725-008-9357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-008-9357-5

Keywords

Navigation