Skip to main content
Log in

The Role of GIGANTEA Gene in Mediating the Oxidative Stress Response and in Arabidopsis

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The Arabidopsis GIGANTEA (GI) gene has been shown to be involved in the regulation of the oxidative stress response; however, little is known about the mechanism by which GI gene regulates the oxidative stress response. We show here that enhanced tolerance of the gi-3 mutant to oxidative stress is associated, at least in part, with constitutive activation of superoxide dismutase (SOD) and ascorbate peroxidase (APX) genes. The gi-3 plants were more tolerant to parquart (PQ) or hydrogen peroxide (H2O2)-mediated oxidative stress than wild-type plants. Analyses of concentrations of endogenous H2O2 and superoxide anion radicals as well as lipid peroxidation revealed that enhanced tolerance of gi-3 plants to oxidative stress was not due to defects in the uptake of PQ or the sequestration of PQ from its site of action, and that the gi-3 mutation alleviated oxidative damage of plant cells from PQ stress. Moreover, the gi-3 mutant showed constitutive activation of cytosolic Cu/ZnSOD and plastidic FeSOD as well as cytosolic APX1 and stromal APX genes, which at least in part contributed to constitutive increases in activities of anti-oxidative enzymes SOD and APX, respectively. To our knowledge, we demonstrate, for the first time, that GI gene regulates the oxidative stress response, at least in part, through modulation of SOD and APX genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • R.G. Alscher N. Erturk L.S. Heath (2002) ArticleTitleRole of superoxide dismutases (SODs) in controlling oxidative stress in plants J. Exp. Bot. 53 1331–1341 Occurrence Handle10.1093/jexbot/53.372.1331 Occurrence Handle1:CAS:528:DC%2BD38XktFSlsL4%3D Occurrence Handle11997379

    Article  CAS  PubMed  Google Scholar 

  • M. Baier G. Noctor C.H. Foyer K.J. Dietz (2000) ArticleTitleAntisense suppression of 2-cystein peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism Plant Physiol. 124 823–832 Occurrence Handle10.1104/pp.124.2.823 Occurrence Handle1:CAS:528:DC%2BD3cXnsF2rsbc%3D Occurrence Handle11027730

    Article  CAS  PubMed  Google Scholar 

  • C. Beauchamp I. Fridovich (1971) ArticleTitleSuperoxide dismutase: improved assay and an assay applicable to PAGE Anal. Biochem. 44 276–287 Occurrence Handle10.1016/0003-2697(71)90370-8 Occurrence Handle1:CAS:528:DyaE38XjtFKhsg%3D%3D Occurrence Handle4943714

    Article  CAS  PubMed  Google Scholar 

  • I.S. Curtis H.G. Nam J.Y. Yun K.H. Seo (2002) ArticleTitleExpression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering Transgenic Res. 11 249–256 Occurrence Handle10.1023/A:1015655606996 Occurrence Handle1:CAS:528:DC%2BD38XksVSntb8%3D Occurrence Handle12113457

    Article  CAS  PubMed  Google Scholar 

  • S. Davletova L. Rizhsky H. Liang Z. Shengqiang D.J. Oliver J. Coutu V. Shulaev K. Schlauch R. Mittler (2005) ArticleTitleCytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis Plant Cell 17 268–281 Occurrence Handle10.1105/tpc.104.026971 Occurrence Handle1:CAS:528:DC%2BD2MXotlanuw%3D%3D Occurrence Handle15608336

    Article  CAS  PubMed  Google Scholar 

  • R. Desikan S. A-H-Mackerness J.T. Hancock S.J. Neill (2001) ArticleTitleRegulation of the Arabidopsis transcriptome by oxidative stress Plant Physiol. 127 159–172 Occurrence Handle10.1104/pp.127.1.159 Occurrence Handle1:CAS:528:DC%2BD3MXmvFCrt7g%3D Occurrence Handle11553744

    Article  CAS  PubMed  Google Scholar 

  • S.R. Devi M.N.V. Prasad (1998) ArticleTitleCopper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of anti-oxidative enzymes and anti-oxidatives Plant Sci. 138 157–165 Occurrence Handle1:CAS:528:DyaK1cXotVGjsrk%3D

    CAS  Google Scholar 

  • R.S. Dhindsa P. Dhindsa T.A. Thorpe (1987) ArticleTitleLeaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase J. Exp. Bot. 32 93–101

    Google Scholar 

  • I. Dirk V.M. Marc (1995) ArticleTitleOxidative stress in plants Curr. Opin. Biotechnol. 6 153–l58

    Google Scholar 

  • K. Eimert S.M. Wang W.L. Lue J. Chen (1995) ArticleTitleMonogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis Plant Cell 7 1703–1712 Occurrence Handle10.1105/tpc.7.10.1703 Occurrence Handle1:CAS:528:DyaK2MXovFCqu74%3D Occurrence Handle12242359

    Article  CAS  PubMed  Google Scholar 

  • V. Eva I. Dirk V.B. Frank (2002) ArticleTitleSignal transduction during oxidative stress J. Exp. Bot. 53 1227–1236

    Google Scholar 

  • S. Fowler K. Lee H. Onouchi A. Samach K. Richardson B. Morris G. Coupland J. Putterill (1999) ArticleTitleGIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains EMBO J. 18 4679–4688 Occurrence Handle10.1093/emboj/18.17.4679 Occurrence Handle1:CAS:528:DyaK1MXmt1yisb4%3D Occurrence Handle10469647

    Article  CAS  PubMed  Google Scholar 

  • J.J. Hart J.M. Ditomaso (1994) ArticleTitleSequestration and oxygen radical detoxification as mechanisms of paraquat tolerance Weed Sci. 42 277–284 Occurrence Handle1:CAS:528:DyaK2cXksFahsb8%3D

    CAS  Google Scholar 

  • E. Huq J.M. Tepperman P.H. Quail (2000) ArticleTitleGIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis Proc. Natl. Acad. Sci. USA 97 9789–9794 Occurrence Handle10.1073/pnas.170283997 Occurrence Handle1:CAS:528:DC%2BD3cXmtVentbo%3D Occurrence Handle10920210

    Article  CAS  PubMed  Google Scholar 

  • D.J. Kliebenstein R. Monde R.L. Last (1998) ArticleTitleSuperoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization Plant Physiol. 118 637–650 Occurrence Handle10.1104/pp.118.2.637 Occurrence Handle1:CAS:528:DyaK1cXmslyqtb0%3D Occurrence Handle9765550

    Article  CAS  PubMed  Google Scholar 

  • M. Koornneef C.J. Hanhart J.H. Veen Particlevan der (1991) ArticleTitleA genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana Mol. Gen. Genet. 229 57–66 Occurrence Handle10.1007/BF00264213 Occurrence Handle1:STN:280:By6A2srksFU%3D Occurrence Handle1896021

    Article  CAS  PubMed  Google Scholar 

  • J. Kurepa J. Smalle M. Montagu ParticleVan D. Inez (1998) ArticleTitleOxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat Plant J. 14 759–764 Occurrence Handle10.1046/j.1365-313x.1998.00168.x Occurrence Handle1:CAS:528:DyaK1cXks1Wktbw%3D Occurrence Handle9681039

    Article  CAS  PubMed  Google Scholar 

  • R. Mittler (2002) ArticleTitleOxidative stress, anti-oxidatives and stress tolerance Trends Plant Sci. 7 405–410 Occurrence Handle10.1016/S1360-1385(02)02312-9 Occurrence Handle1:CAS:528:DC%2BD38XntVWnu7Y%3D Occurrence Handle12234732

    Article  CAS  PubMed  Google Scholar 

  • R. Mittler B.A. Zilinskas (1992) ArticleTitleMolecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase J. Biol. Chem. 267 21802–21807 Occurrence Handle1:CAS:528:DyaK3sXkt1Wks7w%3D Occurrence Handle1400489

    CAS  PubMed  Google Scholar 

  • R. Mittler B.A. Zilinskas (1994) ArticleTitleRegulation of pea cytosolic ascorbate peroxidase and other anti-oxidative enzymes during the progression of drought stress and following recovery from drought Plant J. 5 397–405 Occurrence Handle10.1111/j.1365-313X.1994.00397.x Occurrence Handle1:CAS:528:DyaK2cXkslylsrg%3D Occurrence Handle8180623

    Article  CAS  PubMed  Google Scholar 

  • R. Mittler S. Vanderauwera M. Gollery F.V. Breusegem (2004) ArticleTitleReactive oxygen gene network of plants Trends Plant Sci. 9 490–498 Occurrence Handle10.1016/j.tplants.2004.08.009 Occurrence Handle1:CAS:528:DC%2BD2cXotF2msrg%3D Occurrence Handle15465684

    Article  CAS  PubMed  Google Scholar 

  • T. Murashige F. Skoog (1962) ArticleTitleA revised medium for rapid growth and bioassays with tobacco tissue culture Physiol. Plant. 15 473–497 Occurrence Handle1:CAS:528:DyaF3sXksFKm

    CAS  Google Scholar 

  • T. Okuda Y. Matsuda A. Yamanaka S. Sagisaka (1991) ArticleTitleAbrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment Plant Physiol. l97 1265–1267

    Google Scholar 

  • D.H. Park D.E. Somers Y.S. Kim Y.H. Choy H.K. Lim M.S. Soh H.J. Kim S.A. Kay H.G. Nam (1999) ArticleTitleControl of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene Science 285 1579–1582 Occurrence Handle10.1126/science.285.5433.1579 Occurrence Handle1:CAS:528:DyaK1MXlslOqs70%3D Occurrence Handle10477524

    Article  CAS  PubMed  Google Scholar 

  • E. Purba C. Preston S.B. Powles (1995) ArticleTitleThe mechanism of tolerance to paraquat is strongly temperature dependent in resistant Hordeum leporinum Link and H. glaucum Steud Planta 196 464–468 Occurrence Handle10.1007/BF00203645 Occurrence Handle1:CAS:528:DyaK2MXmvFWmsrk%3D

    Article  CAS  Google Scholar 

  • M.V. Rao R.D. Davis (1999) ArticleTitleOzone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid Plant J. 17 603–614 Occurrence Handle10.1046/j.1365-313X.1999.00400.x Occurrence Handle1:CAS:528:DyaK1MXivVSru7c%3D Occurrence Handle10230060

    Article  CAS  PubMed  Google Scholar 

  • K.V.M. Rao T.V.S. Stresty (2000) ArticleTitleAntioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses Plant Sci. 157 113–128

    Google Scholar 

  • M.V. Rao G. Paliyath D.P. Ormrod D.P. Murr C.B. Watkins (1997) ArticleTitlelnfluence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2) Plant Physiol. 115 137–149 Occurrence Handle10.1104/pp.115.1.137 Occurrence Handle1:CAS:528:DyaK2sXmt1yntLc%3D Occurrence Handle9306697

    Article  CAS  PubMed  Google Scholar 

  • J.G. Scandalios (2002) ArticleTitleOxidative stress responses – what have genome-scale studies taught us? Genome Biology 3 10191–10196 Occurrence Handle10.1186/gb-2002-3-7-reviews1019

    Article  Google Scholar 

  • K. Shah R.G. Kumar S. Verma R.S. Dubey (2001) ArticleTitleEffect of cadmium on lipid peroxidation, superoxide anion generation and activities of anti-oxidative enzymes in growing rice seedlings Plant Sci. 161 1135–1144 Occurrence Handle10.1016/S0168-9452(01)00517-9 Occurrence Handle1:CAS:528:DC%2BD3MXnvFCltLY%3D

    Article  CAS  Google Scholar 

  • S. Shigeoka T. Ishikawa M. Tamoi Y. Miyagawa T. Takeda Y. Yabuta K. Yoshimura (2002) ArticleTitleRegulation and function of ascorbate peroxidase isoenzymes J. Exp. Bot. 53 1305–1319 Occurrence Handle10.1093/jexbot/53.372.1305 Occurrence Handle1:CAS:528:DC%2BD38XktFSls7Y%3D Occurrence Handle11997377

    Article  CAS  PubMed  Google Scholar 

  • S. Storozhenko P.D. Pauw M.V. Montagu D. Inzé S. Kushnir (1998) ArticleTitleThe heat-shock element is a functional component of the Arabidopsis APX1 gene promoter Plant Physiol. 118 1005–1014 Occurrence Handle10.1104/pp.118.3.1005 Occurrence Handle1:CAS:528:DyaK1cXnsFektb4%3D Occurrence Handle9808745

    Article  CAS  PubMed  Google Scholar 

  • W. Camp ParticleVan C. Bowler R. Villarroel E.W. Tsang M. Montagu ParticleVan D. Inzé (1990) ArticleTitleCharacterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli Proc. Natl. Acad. Sci. USA 87 9903–9907 Occurrence Handle2263641

    PubMed  Google Scholar 

  • P. Zimmermann M. Hirsch-Hoffmann L. Hennig W. Gruissem (2004) ArticleTitleGENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox Plant Physiol. 136 2621–2632 Occurrence Handle10.1104/pp.104.046367 Occurrence Handle1:CAS:528:DC%2BD2cXnvFOru74%3D Occurrence Handle15375207

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, S., Jiang, S. & Zhang, R. The Role of GIGANTEA Gene in Mediating the Oxidative Stress Response and in Arabidopsis. Plant Growth Regul 48, 261–270 (2006). https://doi.org/10.1007/s10725-006-0012-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-006-0012-8

Keywords

Navigation