Skip to main content
Log in

Genetic and ploidy diversity of pear (Pyrus spp.) germplasm of Friuli Venezia Giulia, Italy

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Ancient germplasm represents a reservoir of traits and genes that might maintain large the genetic diversity of a species, like pear, and help breeders to cope with climatic changes and the evolving demand of the market. This paper reports the analysis of 170 pear accessions profiled at 12 simple sequence repeat (SSR) markers. The collection was replicated in three different locations and the identification of matching profiles of duplicated genotypes reduced the dataset to 118 genotypes. Of these, 32 (27.1%) were shown to be triploid by flow cytometry, a result that was confirmed by the occurrence of triallelic profiles at molecular markers and the large leaf size. The geographic location of original plants explained very little molecular variance (2%), that was instead very high among genotypes (98%). This evidence confirms the extensive exchange of plant material among the different geographic areas of the region as well as with neighbouring countries as reported in historical documents. The analysis of synonymy revealed 38 duplicated genotypes and reduced the dataset to 80 unique genotypes, of which 12 were triploid (15.0%). The molecular metrics analysed on 70 unique diploid genotypes, including two commercial cultivars, ‘Abate Fétél’ and ‘Conference’ added as controls, revealed that the observed heterozygosity over all loci (Ho) was 0.742 (range 0.471–0.937 for individual loci), while the expected heterozygosity or gene diversity was 0.808 (range 0.534–0.912). The polymorphic information content was 0.784 on average (range 0.501–0.906 for individual loci). The probability of identity (PID) calculated for individual loci and unrelated genotypes ranged from 0.014 for the most discriminating locus, Ch01d09, to 0.250 for the least discriminating one, Ch04e03. The PID product over all loci was 2.50e−16 for unrelated genotypes and 4.86e−06 for full sibs. The analysis of data is integrated with a discussion on the use of SSR markers in pear genotyping and the origin and the frequency of triploids compared with data from the literature. Finally, a discussion on the resemblance of several groups of cultivars to those of the pomological treatises is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AAVV (1981) Le poirier. CTIFL, Paris, p 219

    Google Scholar 

  • AAVV (2003) Antiche cultivar di pero in Piemonte. Regione Piemonte, p 94

  • Adduca G, Molfetta P, Pellegrini P, Sulli F, Violino C, Zandigiacomo P (1998) Perarias Melarias… Frutticoltura in Carnia. Associazione Culturale Cjargne Culture, Cercivento, Udine, p 167

    Google Scholar 

  • Ahmed M, Akbar M, Muhammad A, Khan Q, Pearce S (2015) Evaluation of genetic diversity in Pyrus germplasm native to Azad Jammu and Kashmir (Northern Pakistan) revealed by microsatellite markers. Afr J Biotechnol 9(49):8323–8333

    Google Scholar 

  • Akçay ME, Burak M, Kazan K, Yüksel C, Mutaf F, Bakir M et al (2014) Genetic analysis of Anatolian pear germplasm by simple sequence repeats. Ann Appl Biol 164:441–452

    Google Scholar 

  • Bao L, Chen K, Zhang D, Cao YF, Yamamoto T, Teng YW (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54:959–971

    CAS  Google Scholar 

  • Bassil NV, Postman J (2009) Identification of European and Asian pears using EST-SSRs from Pyrus. Genet Resour Crop Evol 57:357–370

    Google Scholar 

  • Bassil N, Postman JD, Neou C (2005) Pyrus microsatellite markers from genbank sequences. Acta Hortic 671:289–292

    CAS  Google Scholar 

  • Bassil N, Hummer KE, Postman JD, Fazio G, Baldo A, Armas I, Williams R (2009) Nomenclature and genetic relationships of apples and pears from Terceira Island. Genet Resour Crop Evol 56:339–352

    Google Scholar 

  • Bell RL (1991) Pears (Pyrus). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops. Acta horticulturae, vol 290. ISHS, Wageningen, pp 657–697

    Google Scholar 

  • Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds) Fruit breeding. Wiley, New York, pp 441–514

    Google Scholar 

  • Bennici S, Las Casas G, Distefano G, Di Guardo M, Continella A, Ferlito F et al (2018) Elucidating the contribution of wild related species on autochthonous pear germplasm: a case study from Mount Etna. PLoS ONE 13(6):e0198512. https://doi.org/10.1371/journal.pone.0198512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bianco PM, Forconi V, Guido S (eds) (2014) Frutti dimenticati e biodiversità recuperata. Il germoplasma frutticolo e viticolo delle agricolture tradizionali italiane. Casi studio: Molise, Friuli Venezia Giulia. ISPRA Quaderni-Natura e biodiversità 6, p 174

  • Brini W, Mars M, Hormaza JI (2008) Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Sci Hortic 115:337–341

    CAS  Google Scholar 

  • Camangi F, Stefani A, Sebastiani L, Martinelli F, Segantini L, Serravelli M, Nappini E, Busconi M, Fogher C (2006) Vecchie cultivar di pero (Pyrus communis L.) censite nel casentino (AR): caratterizzazione morfologica, biometrica e molecolare (SSR). Italus Hortus 13(2):194–197

    Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H et al (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 9(4):e92644. https://doi.org/10.1371/journal.pone.0092644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8:127

    PubMed  PubMed Central  Google Scholar 

  • Dequigiovanni G, Rech F, Gatti Gomes FG, Somensi Cerotti I, Faoro I, Dias de Oliveira PR, Quecini V, Ritschel P (2012) Identification of a Simple Sequence Repeat molecular-marker set for large-scale analyses of pear germplasm. Crop Breed Appl Biotechnol 12:118–125

    CAS  Google Scholar 

  • Dondini L, Sansavini S (2012) European pear. In: Badenes ML, Byrne DH (eds) Fruit breeding. Springer, New York, pp 369–413

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duhamel du Monceau HL (1768) Traité des arbres fruitiers; contenant leur figure, leur description, leur culture. Saillant et Desaint, Paris, p 337

  • Erfani J, Ebadi A, Abdollahi H, Fatahi R (2012) Genetic diversity of some pear cultivars and genotypes using Simple Sequence Repeat (SSR) markers. Plant Mol Biol Rep 30:1065–1072

    CAS  Google Scholar 

  • Evans KM, Fernández-Fernández F, Govan C (2009) Harmonising fingerprinting protocols to allow comparisons between germplasm collections—Pyrus. Acta Hortic 814:103–106

    Google Scholar 

  • Fernández-Fernández F (2009) Fingerprinting the National apple & pear collections. Final report GC0140 fingerprinting the National apple & pear collections. WEB site Accessed 30 April 2019

  • Fernández-Fernández F, Harvey NG, James CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes 6:1039–1041

    Google Scholar 

  • Ferradini N, Lancioni H, Torricelli R, Russi L, Ragione ID et al (2017) Characterization and phylogenetic analysis of ancient Italian landraces of pear. Front Plant Sci 8:751

    PubMed  PubMed Central  Google Scholar 

  • Ferreira dos Santos AR, Ramos-Cabrer AM, Díaz-Hernández MB, Pereira-Lorenzo Santos S (2011) Genetic variability and diversification process in local pear cultivars from northwestern Spain using microsatellites. Tree Genet Genomes 7:1041–1056

    Google Scholar 

  • Fideghelli C (coord) (2017) Atlante dei fruttiferi autoctoni italiani [Atlas of autoctonous Italian fruit crops], vol I. Belt Multimedia. ISBN 978-88-99595-35-7

  • Filippini N (2018) Pero da sidro in Val Canale e Canal del Ferro [Perry pear in Canale Valley and Canal del Ferro]. Dissertation, University of Udine, Italy

  • Flores-Rentería L, Krohn A (2013) Scoring microsatellite loci. In: Kantartzi SK (ed) Microsatellites: methods and protocols, methods in molecular biology, vol 1006. Springer, Berlin, pp 319–336

    Google Scholar 

  • Gaius Plinius Secundus (Pliny the Elder) (1984) Storia naturale. III Botanica (Natural History. III Botany). Giulio Einaudi Editore, Torino, pp 996

  • Gallesio G (1817-–839) Pomona italiana ossia trattato degli alberi fruttiferi [Italian Pomona namely treatise of fruit crops]. Capurro, Pisa

  • Gasi F, Kurtovic M, Kalamujic B, Pojskic N, Grahic J, Kaiser C et al (2013) Assessment of European pear (Pyrus communis L.) genetic resources in Bosnia and Herzegovina using microsatellite markers. Sci Hortic 157:74–83

    CAS  Google Scholar 

  • Hedrick UP (1921) The pears of New York. JB Lyon Company, Albany, p 636

    Google Scholar 

  • Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Am Soc Hortic Sci 128(4):515–520

    CAS  Google Scholar 

  • Jamshidi S, Jamshidi S (2011) NTSYSpc 2.02 implementation in molecular biodata analysis (clustering, screening, and individual selection). Int Conf Environ Comput Sci IPCBEE 19:165–169

    Google Scholar 

  • Jiang ZW, Tang F, Huang HW, Hu HJ, Chen Q (2009) Assessment of genetic diversity of Chinese sand pear landraces (Pyrus pyrifolia Nakai) using Simple Sequence Repeat markers. HortScience 44(3):619–626

    Google Scholar 

  • Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet. https://doi.org/10.1007/s10592-006-9134-9

    Article  Google Scholar 

  • Katayama H, Adachi S, Yamamoto T, Uematsu C (2007) A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genet Resour Crop Evol 54:1573–1585

    CAS  Google Scholar 

  • Kimura T, Shi YZ, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Tamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52:115–121

    CAS  Google Scholar 

  • Leroy A (1867–1869) Dictionnaire de Pomologie. Tome 1 & 2 Poires. Paris

  • Liu Q, Song Y, Liu L et al (2015) Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genet Genomes 11:128. https://doi.org/10.1007/s11295-015-0953-z

    Article  Google Scholar 

  • Martinelli F, Busconi M, Camangi F, Fogher C, Stefani A, Sebastiani L (2008) Ancient Pomoideae (Malus domestica Borkh. and Pyrus communis L.) cultivars in “Appenino Toscano” (Tuscany, Italy): molecular (SSR) and morphological characterization. Caryologia 61(3):320–331

    Google Scholar 

  • Miranda C, Urrestarazu J, Santesteban LG, Royo JB, Urbina V (2010) Genetic diversity and structure in a collection of ancient Spanish pear cultivars assessed by microsatellite markers. J Am Soc Hortic Sci 135(5):428–437

    Google Scholar 

  • Molon G (1901) Pomologia [Pomology]. Hoepli, Milano, p 717

  • Morettini A, Baldini E, Scaramuzzi F, Mittempergher L (1967) Monografia delle principali cultivar di pero. CNR, Firenze

  • Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400

    CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips WD, Ranney TG, Touchell DH, Eaker TA (2016) Fertility and reproductive pathways of triploid flowering pears (Pyrus sp.). HortScience 51(8):968–971

    Google Scholar 

  • Podwiszyńska M, Kruczyńska D, Machlańska A, Dyki B, Sowik I (2016) Nuclear DNA content and ploidy level of apple cultivars including Polish ones in relation to some morphological traits. Acta Biol Crac Ser Bot 58(1):81–93. https://doi.org/10.1515/abcsb-2016-0008

    Article  CAS  Google Scholar 

  • Postman J, Bassil N, Bell R (2014) Ploidy of USDA World Pear Germplasm Collection determined by flow cytometry. Acta Hortic 1094:75–82

    Google Scholar 

  • Puskás M, Höfer M, Sestras RE, Peil A, Sestras AF, Hanke MV, Flachowsky E (2015) Molecular and flow cytometric evaluation of pear (Pyrus L.) genetic resources of the German and Romanian national fruit collections. Genet Res Crop Evol 63(6):1023–1033

    Google Scholar 

  • Quarta R, Giovinazzi J, Dettori MT, Vendramin E, Micali S, Verde I (2008) Caratterizzazione varietale mediante marcatori molecolari. Notiziario Risorse Genetiche Vegetali VIII(1/2):41–43

    Google Scholar 

  • Queiroz A, Assunção A, Ramadas I, Viegas W, Veloso MM (2015) Molecular characterization of Portuguese pear landraces (Pyrus communis L.) using SSR markers. Sci Hortic 183:72–76

    CAS  Google Scholar 

  • Ramos-Cabrer AM, DÍaz-Hernández MB, Pereira-Lorenzo S (2007) Morphology and microsatellites in Spanish apple collections. J Hortic Sci Biotechnol 82(2):257–265

    CAS  Google Scholar 

  • Rana JC, Chahota RK, Sharma V, Rana M, Verma N, Verma B et al (2015) Genetic diversity and structure of Pyrus accessions of Indian Himalayan region based on morphological and SSR markers. Tree Genet Genomes 11:821. https://doi.org/10.1007/s11295-014-0821-2

    Article  Google Scholar 

  • Reim S, Lochschmidt F, Proft A, Wolf H, Wolf H (2017) Species delimitation, genetic diversity and structure of the European indigenous wild pear (Pyrus pyraster) in Saxony, Germany. Gen Resour Crop Evol 64:1075–1085

    Google Scholar 

  • Rohlf F (1988) NTSYS-pc—Numerical taxonomy and multivariate analysis system. 2.1. Applied Biostatistics Inc, New York, p 43

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 97:406–425

    Google Scholar 

  • Schiavon M (2010) Antiche varietà di mele e pere del Veneto. Veneto Agricoltura, Legnaro, p 167

    Google Scholar 

  • Sehic J, Garkava-Gustavsson L, Fernández-Fernández F, Nybom H (2012) Genetic diversity in a collection of European pear (Pyrus communis) cultivars determined with SSR markers chosen by ECPGR. Sci Hortic 145:39–45

    CAS  Google Scholar 

  • Silva GJ, Medeiros Souza T, Barbieri RL, Costa de Oliveira A (2014) Origin, domestication, and dispersing of pear (Pyrus spp.). Adv Agric. Article ID 541097. http://dx.doi.org/10.1155/2014/541097

  • Sisko M, Javornik B, Siftar A, Ivancic A (2009) Genetic relationships among Slovenian pears assessed by molecular markers. J Am Soc Hortic Sci 134(1):97–108

    Google Scholar 

  • Song Y, Fan L, Chen H, Zhang M, Ma Q, Zhang S, Wu J (2014) Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers. Sci Hortic 167:5–16

    CAS  Google Scholar 

  • Suprun II, Tokmakov SV, Bandurkob IA, Ilnitskaya ET (2016) SSR polymorphism of modern cultivars and autochthonous forms of the pear tree from north Caucasus. Russ J Genet 52(11):1149–1156

    CAS  Google Scholar 

  • Testolin R, Cipriani G (2010) Molecular markers for germplasm identification and characterization. In: Proc. ISHS meeting “Molecular markers in horticulture”, Oregon, USA, July 29–August 1. Acta horticulturae, vol 859. pp 59–72

  • Testolin R, Foria S, Baccichet I, Messina R, Danuso F, Losa A, Scarbolo E, Stocco M, Cipriani G (2019) Genotyping apple (Malus x domestica) heirloom germplasm collected and maintained by the Regional Administration of Friuli Venezia Giulia (Italy). Sci Hortic 252:229–237

    Google Scholar 

  • Tian L, Gao Y, Cao Y, Liu F, Yang J (2012) Identification of Chinese white pear cultivars using SSR markers. Genet Res Crop Evol 59(3):317–326

    Google Scholar 

  • Urbanovich OY, Kazlouvskaya ZA, Yakimovich OA, Kartel NA (2011) Polymorphism of SSR alleles in pear cultivars grown in Belarus. Russ J Genet 47:305–313

    CAS  Google Scholar 

  • Urrestarazu J, Royo JB, Santesteban LG, Miranda C (2015) Evaluating the influence of the microsatellite marker set on the genetic structure inferred in Pyrus communis L. PLoS ONE. https://doi.org/10.1371/journal.pone.0138417

    Article  PubMed  PubMed Central  Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, Cambridge, p 498. ISBN 0-521-40427-4

    Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    PubMed  CAS  Google Scholar 

  • Wu J, Wang ZW, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Wang YT, Xu JB et al (2018) Diversification and independent domestication of Asian and European pears. Genome Biol 19:77. https://doi.org/10.1186/s13059-018-1452-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Wünsch A, Hormaza JI (2007) Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Sci Hortic 113:37–43

    Google Scholar 

  • Xuan H (2008) Identifying European pear (Pyrus communis L.) cultivars at the KOB by using apple SSRs. Acta Hortic 800:439–445

    CAS  Google Scholar 

  • Yakovin NA, Fesenko IA, Isachkin AV, Karlov GI (2011) Polymorphism of microsatellite loci in cultivars and species of pear (Pyrus L.). Russ J Genet 47:564–570

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y et al (2012) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    Google Scholar 

  • Youssef J, Strazzolini E, Toffolutti B, Piazza L (2000) Pomologia friulana [Friuli pomology]. Supplement of the Notiziario ERSA n. 5, p 255

  • Zandigiacomo P (2014) Sidro di mele e di pere… nonché altri prodotti friulani a base di frutta. Tiere furlane 21(6/2):92–94

    Google Scholar 

  • Zandigiacomo P, Testolin R (2017) Friuli Venezia Giulia. In: Fideghelli C (coord) Atlante dei fruttiferi autoctoni italiani [Atlas of autoctonous Italian fruit crops], vol I. Belt Multimedia, pp 167–178. ISBN 978-88-99595-35-7

Download references

Acknowledgements

This study was funded by ERSA – Agenzia Regionale per lo Sviluppo Rurale (Grant Number F22I15000120002). The authors would like to thank Gianluca Bianchi, Teresa Marrazzo and Luca De Sabbata for their assistance in the identification of accessions in the field, Giorgio Comuzzo and Renato Frezza for participating to the collection of samples and to the field observations. The authors thank also Francesco Danuso for the program of conversion of the original dataset of profiles into the binary matrix of allele presence/absence. The executable program can be requested from the author (francesco.danuso@uniud.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Testolin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

The research did not involve human and animals in the experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccichet, I., Foria, S., Messina, R. et al. Genetic and ploidy diversity of pear (Pyrus spp.) germplasm of Friuli Venezia Giulia, Italy. Genet Resour Crop Evol 67, 83–96 (2020). https://doi.org/10.1007/s10722-019-00856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-019-00856-9

Keywords

Navigation