Skip to main content

Advertisement

Log in

Flow cytometry: a quick method to determine ploidy levels in honeybush (Cyclopia spp.)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Cyclopia (honeybush) species are widely-used in the production of a South African herbal tea and are endemic to the fynbos region of the Western and Eastern Cape Provinces. Honeybush is still one of the orphan agriculture crops and recent breeding efforts by researchers are hampered by the lack of basic genetic information e.g. basic chromosome numbers and ploidy levels. This study determined nuclear DNA content and ploidy level of various genotypes of three Cyclopia species using flow cytometry and cytological counting of chromosomes. Nuclei analysis of young leaves of C. genistoides, C. longifolia and C. subternata were done using a flow cytometer, while root tip squashes were carried out in order to correlate flow cytometry results. Flow cytometry analysis indicated differences in the nuclear DNA content among and within species whilst the DNA ploidy level only differed among species. Cyclopia genistoides had a higher DNA ploidy level (≥ 10C) and DNA content (10.63 pg) than C. longifolia (6.09 pg) and C. subternata (5.99 pg), with no differences observed between the ploidy level of the latter two species (6C). The inferred ploidy level from nuclear DNA content by flow cytometry was consistent in all 30 genotypes of C. longifolia, and 24 of the 25 C. subternata and in only four of the 15 C. genistoides studied genotypes. These findings are important in breeding new cultivars with desired horticultural traits, thus improving the commercial characteristics for the sustainable production of honeybush.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA flourescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790

    Article  PubMed  Google Scholar 

  • Bester C (2013) A model for commercialisation of honeybush tea, an indigenous crop. Acta Hortic (ISHS) 1007:889–894

    Article  Google Scholar 

  • Bester C, Blomerus LM, Kleynhans R (2009) Development of new floriculture crops in South Africa. Acta Hortic 813:67–72

    Article  Google Scholar 

  • Bester C, Tobutt KR, Mansvelt EL, Blomerus LM, Jolly N, PieterseW-M, Smit L, Van Schalkwyk D (2013) The value and impact of the ARC Infruitec-Nietvoorbij genebanks. In: Proceedings of the 2nd all Africa horticultural congress. Acta horticulture, pp 975–980

  • Bester C, Joubert ME, Joubert E (2016) A breeding strategy for South African indigenous herbal teas. Acta Hortic 1127:15–22

    Article  Google Scholar 

  • Bohn K, Pavlick R, Reu B, Kleidon A (2014) The strengths of r- and K-selection shape diversity-disturbance relationships. PLoS ONE 9(4):1–10

    Article  CAS  Google Scholar 

  • Buitendijk JH, Boon E, Ramanna MS (1997) Nuclear DNA content in twelve species of Alstroemeria L. and some of their hybrids. Ann Bot 79:343–353

    Article  Google Scholar 

  • Černiá L, Münzbergoviá Z (2013) Comparative population dynamics of two closely related species differing in ploidy level. PLoS ONE 8(10):1–15

    Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploidy. Nat Rev Genet 6:836–846

    Article  PubMed  CAS  Google Scholar 

  • Costich DE, Friebe B, Sheehan MJ, Casler MD, Buckler ES (2010) Genome-size variation in switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampart aneuploidy. Plant Genome 3(3):130–141

    Article  Google Scholar 

  • De Beer D, Schulze AE, Joubert E, De Villiers A, Malherbe CJ, Stander MA (2012) Food ingredient extracts of Cyclopia subternata (honeybush): variation in phenolic composition and antioxidant capacity. Molecules 17:14602–14624

    Article  PubMed  CAS  Google Scholar 

  • De Lange H, Von Mollendorf L (2006) Current position of plant improvement in the honeybush tea industry [Afrikaans]. SAHTA Newsl 14:8–15

    Google Scholar 

  • Doležel J, Bartoŝ J (2005) Plant DNA cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(Supplement A):17–26

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2(9):2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Emshwiller E (2002) Ploidy levels among species in the ‘Oxalis tuberosa alliance’ as inferred by flow cytometry. Ann Bot 89:741–753

    Article  PubMed  PubMed Central  Google Scholar 

  • Fay MF, Cowan R, Leitch IJ (2005) The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fingerprints. Ann Bot 95:237–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldblatt P (1981) Chromosome numbers in legumes II. Ann Mo Bot Gard 68(4):551–557

    Article  Google Scholar 

  • Goldblatt P, Davidse G (1977) Chromosome numbers in legumes. Ann Mo Bot Gard 64(1):121–128

    Article  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen DL, Lambertini C, Jampeetong A, Brix H (2007) Clone-specific differences in Phragmites australis: effects of ploidy level and geographic origin. Aquat Bot 86:269–279

    Article  Google Scholar 

  • Huang H, Tong Y, Zhang Q-J, Gao L-Z (2013) Genome size variation among and within Camellia species by flow cytometric analysis. PLoS ONE 8(5):1–14

    CAS  Google Scholar 

  • Jing Z, Wang X (2013) Genetic relationship between Chinese wild Vitis species and American and European cultivars based on ISSR markers. Biochem Syst Ecol 46:120–126

    Article  CAS  Google Scholar 

  • Jones KD, Reed SM, Rinehart TA (2007) Analysis of ploidy level and its effects on guard cell length, pollen diameter, and fertility in Hydrangea macrophylla. HortScience 42(3):483–488

    Google Scholar 

  • Joubert E, Joubert ME, Bester C, De Beer D, De Lange JH (2011) Honeybush (Cyclopia spp.): from local cottage industry to global markets: The catalytic and supporting role of research. S Afr J Bot 4(77):887–907

    Article  Google Scholar 

  • Joubert E, De Beer D, Hernández I, Munné-Bosch S (2014) Accumulation of mangiferin, isomangiferin, iriflophenone-3-C-β-glucoside and hesperidin in honeybush leaves (Cyclopia genistoides Vent.) in response to harvest time, harvest interval and seed source. Ind Crops Prod 56:74–82

    Article  CAS  Google Scholar 

  • Kapraun D (2005) Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. Ann Bot 95:7–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khokhan D, Zhang C, Li Y, Wang Q, Zeng Q, Yamazaki A, Hutchins W, Zhou S-S, Chen X, Yang C-H (2013) Discovery of plant phenolic compounds that act as type II secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol 79(18):5424–5436

    Article  CAS  Google Scholar 

  • Kleynhans R, Spies JJ, Spies P (2009) Cross-ability in the genus Lachenalia. Acta Hortic (ISHS) 813:385–392

    Article  Google Scholar 

  • Kubátová B, Trávníček P, Bastlova D, Čurn V, Jarolímová V, Suda J (2007) DNA ploidy-level variation in native and invasive populations of Lythrum salicaria at a large geographical scale. J Biogeogr 35:1–10

    Google Scholar 

  • Las Peñas ML, Urdampilleta JD, López-Carro B, Santiñaque F, Kiesling R, Bernardello G (2014) Classical and molecular cytogenetics and DNA content in Maihuenia and Pereskia (Cactaceae). Plant Syst Evol 300:549–558

    Article  Google Scholar 

  • Lee YS, Park HM, Kim N-H, Waminal NE, Kim YJ, Lim K-B, Baek JH, Kim HH, Yang T-J (2016) Phylogenetic relationship of 40 species of genus Aloe L. and the origin of an allodiploid species revealed by nucleotic sequence variation in chloroplast intergenic space and cytogenetic in situ hybridization. Genet Resour Crop Evol 63:235–242

    Article  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (embryophyta). Ann Bot 95:207–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lipowsky A, Roscher C, Schumacher J, Schmid B (2012) Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists. PLoS ONE 7(1):1–9

    Article  CAS  Google Scholar 

  • Lo EYY, Stefanović S, Dickinson TA (2013) Geographical parthenogenesis in Pacific Northwest hawthorns (Crataegus; Rosaceae). Botany 91:107–116

    Article  CAS  Google Scholar 

  • López-Vinyallonga S, Soriano I, Susanna A, Montserra JM, Roque C, Garcia-Jacas N (2015) The polyploid series of the Achillea millefolium aggregate in the Iberian Peninsula investigated using microsatellites. PLoS ONE 10:1–19

    Google Scholar 

  • Loureiro L, Rodriguez E, Doložel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    Article  PubMed  CAS  Google Scholar 

  • Marnewick JL, Batenburg W, Swart P, Joubert E, Swanevelder S, Gelderblom WCA (2004) Ex vivo modulation of chemical-induced mutagenesis by subcellular liver fractions of rats treated with rooibos (Aspalathus linearis) tea, honeybush (Cyclopia intermedia) tea, as well as green and black (Camellia sinensis) teas. Mutat Res 558:145–154

    Article  PubMed  CAS  Google Scholar 

  • Maseko ST, Dakora FD (2013) Plant enzymes, root exudates, cluster roots and mychorrhizal symbiosis are the drivers of P nutrition in native legumes growing in P deficient soils of the Cape Fynbos in South Africa. J Agric Sci Technol A3:331–340

    Google Scholar 

  • Meagher TR, Vassiliadis C (2005) Phenotypic impacts of repetitive DNA in flowering plants. N Phytol 168:71–80

    Article  CAS  Google Scholar 

  • Meng R, Finn C (2002) Determining ploidy level and nuclear DNA content in Rubus by flow cytometry. J Am Soc Hortic Sci 127(5):767–775

    CAS  Google Scholar 

  • Motsa MM, Slabbert MM, Bester C, Ngwenya MZ (2016) Phenology of honeybush (Cyclopia genistoides and C. subternata) genotypes. S Afr J Bot 110:57–67

    Article  Google Scholar 

  • Motsa MM, Bester C, Slabbert MM, Ngwenya MZ, Booyse M (2017) Natural fecundity and germination characteristics of selected Cyclopia (Honeybush) species: preliminary findings. J Agric Sci 9(6):154–167

    Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nani TF, Mesquita AT, Bustamante FDO, Barbosa S, Barbosa JVC, Davide LC (2015) Variation of karyotype and nuclear DNA content among four species of Plectranthus L’ Héritier, 1788 (Lamiaceae) from Brazil. Comp Cytogenet 9(4):549–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Negrón-Ortiz V (2007) Chromosome number, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of Caribbean Islands. Am J Bot 94(8):1360–1370

    Article  PubMed  Google Scholar 

  • Niemandt M, Roodt-Wilding R, Tobutt KR, Bester C (2018) Microsatellite marker applications in Cyclopia (Fabaceae) species. S Afr J Bot 116:52–60

    Article  CAS  Google Scholar 

  • Ott RL, Longnecker M (2001) An introduction to statistical methods and data analysis, 5th edn. Duxbury Press, Belmont

    Google Scholar 

  • Parris JK, Ranney TG, Knab HK, Baird WV (2010) Ploidy levels, relative genome sizes and base pair composition in Magnolia. J Am Soc Hortic Sci 135(6):533–547

    Google Scholar 

  • Pellicer J, Leitch IJ (2014) The application of flow cytometry for estimating genome size and ploidy level in plants. In: Besse P (ed) Molecular plant taxonomy: methods and protocols, methods in molecular biology, vol 1115. Springer, New York

    Chapter  Google Scholar 

  • Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934

    Article  CAS  Google Scholar 

  • Qiu Y-X, Hong D-Y, Fu C-X, Cameron KM (2004) Genetic variation in the endangered and endemic species Changium smyrniodes (Apiaceae). Biochem Syst Ecol 32:583–596

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2012) The statistical procedure manual, North Carolina 27513. SAS Campus Drive, Cary

  • Schutte AL (1997) Systematics of the genus Cyclopia Vent. (Fabaceae, Podalyrieae). Edinb J Bot 54:125–170

    Article  Google Scholar 

  • Schutte AL, Vlok JHJ, Van Wyk B-E (1995) Fire-survival strategy—a character of taxonomic, ecological and evolutionary importance in fynbos legumes. Plant Syst Evol 195:243–259

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Siljak-Yakovlev S, Pusstahija F, Vicic V, Robin O (2014) Molecular cytogenetics (FISH and fluorochrome banding): resolving species relationships and genome size organisation. In: Besse P (ed) Molecular plant taxonomy: methods and protocols, methods in molecular biology, vol 1115. Springer, New York

    Chapter  Google Scholar 

  • Singh RJ (2003) Plant cytogenetics, 2nd edn. CRC Press, Boca Raton. https://books.google.co.za/books/about/Plant_Cytogenetics_Second_Edition.html?id=srMJQ2PvNQAC&redir_esc=y

  • Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J (2013) Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilisation experiment. N Phytol 200:911–921

    Article  CAS  Google Scholar 

  • Spriggs AMY, Dakora FD (2009) Field assessment of symbiotic N2 fixation in the wild and cultivated Cyclopia species in the South African fynbos 15N natural abundance. Tree Physiol 29:239–247

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AV, Kotina EL, Tilney PM, Van Wyk B-E (2012) Leaf and stem anatomy of honeybush tea (Cyclopia species, Fabaceae). S Afr J Bot 82:123–128

    Article  CAS  Google Scholar 

  • Stofer A (1996) Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species. Tree 11(8):343–348

    Google Scholar 

  • Tiersch TR, Chandler RW, Wachtel SS, Elias S (1989) Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10:706–710

    Article  PubMed  CAS  Google Scholar 

  • Trindade H, Sena I, Gonçalves S, Romano A (2012) Genetic diversity of wild populations of Tuberaria major (Cistaceae). An endangered species endemic to the Algarve region (Portugal), using ISSR markers. Biochem Syst Ecol 45:49–56

    Article  CAS  Google Scholar 

  • Uchiyama K, Goto S, Tsuda Y, Takahashi Y, Ide Y (2006) Genetic diversity and genetic structure of adult and buried seed populations of Betula maximowicziana in mixed and post-fire stands. For Ecol Manag 237:119–126

    Article  Google Scholar 

  • Udall JA, Wendel J (2006) Polyploidy and crop improvement. Plant Genome 1:S3–S14

    Google Scholar 

  • Verhoog NJD, Joubert E, Louw A (2007) Evaluation of the phyto-oestrogenic activity of Cyclopia genistoides (honeybush) methanol extracts and relevant polyphenols. J Agric Food Chem 55:4371–4381

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Bigelow CA, Jiang Y (2009) Ploidy level and DNA content of perennial ryegrass germplasm as determined by flow cytometry. HortScience 44(7):2049–2052

    Google Scholar 

  • Xu H, Zhang W, Zhang TLJ, Wu Z, Dong L (2014) Determination of ploidy level and isolation of genes encoding acetyl-coa carboxylase in Japanese foxtail (Alopercurus japonicus). PLoS ONE 9:1–12

    Google Scholar 

  • Yahata M, Kunitake H, Yasuda K, Yamashita K, Komatsu H, Matsumoto R (2006) Production of sexual hybrid progenies for clarifying the phylogenic relationship between Citrus and Citropsis species. J Am Soc Hortic Sci 131(6):746–769

    Google Scholar 

  • Yildiz M (2013) Plant responses at different ploidy levels. Agric Biol Sci 16:363–385

    Google Scholar 

Download references

Acknowledgements

The authors thank the personnel of the ARC Infruitec-Nietvoorbij Crop Development Division for their assistance in the field sampling. Lastly, thanks to Gerrit Visser of the Plant Improvement Division (Biotechnology), ARC-Tropical and Subtropical Crops (ARC-TSC); Lize Engelbrecht, Rozanne Adams and Dumisile Lumkwana of the Central Analytical Facilities (CAF) at the University of Stellenbosch for Flow cytometry training and sample preparation and analysis.

Funding

This study was partially supported by funding from the Department of Science and Technology (DST), Monetary Treasury Economic Fund (MTEF), National Research Foundation (NRF), ARC Infruitec-Nietvoorbij and Tshwane University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Bester.

Ethics declarations

Conflict of interest

The authors declare that the study was conducted in compliance with ethical standards and that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motsa, M.M., Bester, C., Slabbert, M.M. et al. Flow cytometry: a quick method to determine ploidy levels in honeybush (Cyclopia spp.). Genet Resour Crop Evol 65, 1711–1724 (2018). https://doi.org/10.1007/s10722-018-0648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0648-z

Keywords

Navigation