Skip to main content
Log in

Genetic diversity of dihydrochalcone content in Malus germplasm

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Dihydrochalcones, beneficial phenolic compounds, are abundant in Malus Mill. species, particularly in vegetative tissues and seeds. Phloridzin (phloretin 2′-O-glucoside) is the primary dihydrochalcone in most Malus species including cultivated apple, Malus × domestica Borkh. A few species contain sieboldin (3-hydroxyphloretin 4′-O-glucoside) or trilobatin (phloretin 4′-O-glucoside) in place of phloridzin, and interspecific hybrids may contain combinations of phloridzin, sieboldin, and trilobatin. Proposed health benefits of phloridzin include anti-cancer, antioxidant, and anti-diabetic properties, suggesting the potential to breed apples for nutritional improvement. Sieboldin and trilobatin are being investigated for nutritional value and unique chemical properties. Although some of the biosynthetic steps of dihydrochalcones are known, little is known about the extent of variation within Malus germplasm. This research explores the genetic diversity of leaf dihydrochalcone content and composition in Malus germplasm. Dihydrochalcone content was measured using high performance liquid chromatography (HPLC) from leaf samples of 377 accessions, representing 50 species and interspecific hybrids from the USDA-Agricultural Research Service (ARS) National Plant Germplasm System Malus collection. Within the accessions sampled, 284 accessions contained phloridzin as the primary dihydrochalcone, one had only trilobatin, two had phloridzin and trilobatin, 36 had sieboldin and trilobatin, and 54 had all three. Leaf phloridzin content ranged from 17.3 to 113.7 mg/g with a heritability of 0.76 across all accessions. Beyond the potential of dihydrochalcones for breeding purposes, dihydrochalcone composition may be indicative of hybridization or species misclassification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

This project was funded by the USDA-ARS Plant Genetics Resources Unit, Geneva NY. BG was supported through the USDA Pathways Program. We thank Jie Arro, Lailiang Cheng, Michael Gore, Thomas Chao, Gennaro Fazio, and Heidi Schwaninger for their input and technical assistance throughout the project; the PGRU Clonal group for field and database assistance; and the Arnold Arboretum of Harvard University for providing budwood of M. trilobata 127-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Gutierrez.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, B.L., Zhong, GY. & Brown, S.K. Genetic diversity of dihydrochalcone content in Malus germplasm. Genet Resour Crop Evol 65, 1485–1502 (2018). https://doi.org/10.1007/s10722-018-0632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0632-7

Keywords

Navigation