Skip to main content
Log in

Molecular Markers for the Classification of Switchgrass (Panicum virgatum L.) Germplasm and to Assess Genetic Diversity in Three Synthetic Switchgrass Populations

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Information regarding the amount of genetic diversity is necessary to enhance the effectiveness of breeding programs and germplasm conservation efforts. Genetic variation between 21 switchgrass genotypes randomly selected from two lowland (‘Alamo’ and ‘Kanlow’) and one upland (‘Summer’) synthetic cultivars were estimated using restriction fragment length polymorphism (RFLP) markers. Comparison of 85 RFLP loci revealed 92% polymorphism between at least two genotypes from the upland and lowland ecotypes. Within ecotypes, the upland genotypes showed higher polymorphism than lowland genotypes (64% vs. 56%). ‘Kanlow’ had a lower percent of polymorphic loci than ‘Alamo’ (52% vs. 60%). Jaccard distances revealed higher genetic diversity between upland and lowland ecotypes than between genotypes within each ecotype. Hierarchical cluster analysis using Ward's minimum variance grouped the genotypes into two major clusters, one representing the upland group and the other the lowland group. Phylogenetic analysis of chloroplast non-coding region trnL (UAA) intron sequences from 34 switchgrass accessions (6 upland cultivars, 2 lowland cultivars, and 26 accessions of unknown affiliation) produced a neighbor-joining dendrogram comprised of two major clusters with 99% bootstrap support. All accessions grouped in the same cluster with the lowland cultivars (‘Alamo’ and ‘Kanlow’) had a deletion of 49 nucleotides. Phenotypic identification of greenhouse-grown plants showed that all accessions with the deletion are of the lowland type. The deletion in trnL (UAA) sequences appears to be specific to lowland accessions and should be useful as a DNA marker for the classification of upland and lowland germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RFLP:

restriction fragment length polymorphism

trnL (UAA):

tRNALeucine

References

  • Alderson J. and Sharp W.C. (1995). Grass Varieties in the United States. CRC Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Bhattacharjee R., Bramel P., Hash C.T., Kolesnikova-Allen M. and Khairwal I. (2002). Assessment of genetic diversity within and between pearl millet landraces. Theor. Appl. Genet. 105: 666–673

    Article  CAS  PubMed  Google Scholar 

  • Burton G.W. (1942). A cytological study of some species in the tribe Paniceae. Am. J. Bot. 29: 355–359

    Article  Google Scholar 

  • Causse M., Fulton T.M., Cho Y.G., Ahn S.N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P.C., Harrington S.B., Second G.A., McCouch S.R. and Tanksley S.D. (1994). Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251–1274

    CAS  PubMed  Google Scholar 

  • Church G.L. (1940). Cytotaxonomic studies in the gramineae Spartina, Andropogon, and Panicum. Am. J. Bot. 27: 263–271

    Article  Google Scholar 

  • Clegg M.T., Cummings M.P. and Durbin M.L. (1997). The evolution of plant nucleargenes. Proc. Nat. Acad. Sci. USA 94: 7791–7798

    Article  CAS  PubMed  Google Scholar 

  • Falouss A. (1989). Distributional Properties of Jaccard's Index of Similarity. Thesis (M.S.), University of Georgia, Athens, GA

    Google Scholar 

  • Feinberg A.P. and Vogelstein B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J. (1985). Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Gauthier P., Gouesnard B., Dallard J., Redaelli R., Rebourg C., Charcosset A. and Boyat A. (2002). RFLP diversity and relationships among traditional European maize populations. Theor. Appl. Genet. 105: 91–99

    Article  CAS  PubMed  Google Scholar 

  • Gielly L., Yuan Y.M., Kupfer P. and Taberlet P. (1996). Phylogenetic use of noncoding regions in the genus Gentiana L.: chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol. Phylogenet. Evol. 5: 460–466

    Article  CAS  PubMed  Google Scholar 

  • Gunter L.E., Tuskan G.A. and Wullschleger S.D. (1996). Diversity among populations of switchgrass based on RAPD markers. Crop Sci. 36: 1017–1022

    Article  Google Scholar 

  • Hein J. (1990). Unified approach to alignments and phylogenies. Methods Enzymol. 183: 625–645

    Google Scholar 

  • Henry D.S. and Taylor T.H. (1989). Registration of KY1625 switchgrass germplasm. Crop Sci. 29: 1096

    Article  Google Scholar 

  • Hitchcock A.S. (1971). Manual of Grasses of the United States. Vol. II. Dover Publications Inc., New York.

    Google Scholar 

  • Hopkins A.A. and Taliaferro C.M. (1995). A comparison of selection strategies in switchgrass. Proc. Am. Forage Grass Council 4: 190–192

    Google Scholar 

  • Hopkins A.A., Taliaferro C.M., Murphy C.D. and Christian D. (1996). Chromosome number and nuclear DNA content of several Switchgrass population. Crop Sci. 36: 1192–1195

    Article  Google Scholar 

  • Huang S., Su X., Haselkorn R. and Gornicki P. (2003). Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase. Plant Sci. 164: 43–49

    Article  CAS  Google Scholar 

  • Hultquist S.J., Vogel K.P., Lee D.J., Arumuganathan K. and Kaeppler S. (1996). Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci. 36: 1049–1052

    Article  Google Scholar 

  • Jung G.A., Shaffer J.A., Stout W.L. and Panciera M.J. (1990). Warm season grass diversity in yield, plant morphology, and nitrogen concentration and removal in northeastern USA. Agron. J. 82: 21–26

    Article  Google Scholar 

  • Karp A., Seberg O. and Buiatti M. (1996). Molecular techniques in the assessment of botanical diversity. Ann. Bot. 78: 143–149

    Article  CAS  Google Scholar 

  • Kidwell K.K. and Osborn T.C. (1992). Simple plant DNA isolation procedures. In: Beckmann, J.S. and Osborn, T.C. (eds) Plant Genomes: Methods for Genetic and Physical Mapping, pp 1–13. Kluwer Academic Publishing, Netherlands

    Google Scholar 

  • Lefort P. and Douglas G.C. (1999). An efficient micro method of DNA isolation from mature leaves of four hardwood tree species Acer, Fraxinus, Prunus and Quercus. Ann. Forest Sci. 56: 259–263

    Google Scholar 

  • Martinez-Reyna J.M., Vogel K.P., Caha C. and Lee D.J. (2001). Meiotic stability, chloroplast DNA polymorphisms, and morphological traits of Upland Lowland switchgrass reciprocal hybrids. Crop Sci. 41: 1579–1583

    Article  Google Scholar 

  • Martinez-Reyna J.M. and Vogel K.P. (2002). Incompatibility systems in switchgrass. Crop Sci. 42: 1800–1805

    Article  Google Scholar 

  • Massa A.N., Larson S.R., Jensen K.B. and Hole D.J. (2001). AFLP variation in Bromus section Ceratochloa germplasm of Patagonia. Crop Sci. 41: 1609–1616

    Article  Google Scholar 

  • Missaoui A.M. (2003). Molecular Phylogenetic Analysis, Genetic Mapping and Improvement of Switchgrass (Panicum virgatum L.) for Bioenergy and Bioremediation to Excess Phosphorus in the Soil. Ph.D. dissertation, The University of Georgia, Athens, GA

    Google Scholar 

  • Murray M.G. and Thompson W.F. (1982). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321–4325

    Google Scholar 

  • Nei M. and Li W. (1979). Mathematical model for studying the genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 427–434

    Article  Google Scholar 

  • Newell L.C. (1936). Annual report, grass improvement investigations, USDA and the Nebraska AES. Lincoln, NE

    Google Scholar 

  • Nielson E.L. (1944). Analysis of variation in Panicum virgatum. J. Agric. Res. 69: 327–353

    Google Scholar 

  • Porter C.L. (1966). An analysis of variation between upland and lowland switchgrass Panicum virgatum L. in central Oklahoma. Ecology 47: 980–992

    Article  Google Scholar 

  • Redfearn D.D., Moore K.J., Vogel K.P, Waller S.S. and Mitchell R.B. (1999). Fiber digestion dynamics of sward components within switchgrass populations. Crop Sci. 39: 784–789

    Article  Google Scholar 

  • Reiter R.S., Williams J.G.K, Feldmann K.J., Rafalski J.A., Tingey S.C. and Scolnik P.A. (1992). Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc. Natl. Acad. Sci. USA. 89: 1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Saitou N. and Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425

    CAS  PubMed  Google Scholar 

  • Sanderson M.A., Reed R.L., McLaughlin S.B., Wullschleger S.D., Conger B.V., Parrish D.J., Wolf D.D., Taliaferro C., Hopkins A.A., Osumpaugh W.R., Hussey M.A., Read J.C. and Tischler C.R. (1996). Switchgrass as a sustainable bioenergy source. Bioresource Technol. 56: 83–93

    Article  CAS  Google Scholar 

  • SAS Institute Inc. 1999. SAS online doc, Version 8. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Southern E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517

    Article  CAS  PubMed  Google Scholar 

  • Sun Y., Skinner D.Z., Liang G.H. and Hulbert S.H. 1994. Phylogenetic analysis of sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89: 26–32

    Article  CAS  Google Scholar 

  • Swofford D.L. 2000. PAUP* 4.0 Beta Version: Phylogenetic analysis using Parsimony and other methods (software). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Taberlet P., Gielly L., Pautou G. and Bouvet J. 1991. Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Talbert L.E., Timothy D.H., Burns J.C., Rawlings J.O. and Moll R.H. 1983. Estimates of genetic parameters in switchgrass. Crop Sci. 23: 725–728

    Article  Google Scholar 

  • Taliaferro C.M. and Hopkins A.A. 1996. Breeding characteristics and improvement potential of switchgrass. In: Cundiff, J.S. (eds) Proceedings of the third liquid fuel conference, Nashville, TN. 15–17 Sept. 1996, pp 2–9. ASAESt. Joseph, MI

    Google Scholar 

  • Tamura K. and Nei M. 1993. Model selection in the estimation of the number of nucleotide substitutions. Mol. Biol. Evol. 10: 512–526

    CAS  PubMed  Google Scholar 

  • Thorman C.E. and Osborn T.C. 1992. Use of RAPD and RFLP markers for germplasm evaluation. In: (eds) Application of RAPD technology to plant breeding. Proceedings of the Joint Plant Breeding Symposia Series, 1992, pp 9–11. Minneapolis, Minnesota

    Google Scholar 

  • Vogel K.P., Dewald C.L., Gorz H.J. and Haskins F.A. 1985. Development of switchgrass, indiangrass, and eastern gamagrass: Current status and future. In: (eds) Symposium on range plant improvement in western North America: Current status and future. Salt Lake City, UT, Soc Range Management, Denver, CO. pp 51–62.

    Google Scholar 

  • Vogel K.P., Hopkins A.A., Moore K.J., Johnson K.D. and Carlson I.T. 1996. Registration of ‘Shawnee’ switchgrass. Crop Sci. 36: 1713

    Article  Google Scholar 

  • Ward J.H. (1963). Hierarchical grouping to optimize an objective function. Am. Stat. Assoc. J. 56: 236–244

    Article  Google Scholar 

  • Williams W.M., Ansari H.A., Ellison N.W. and Hussain S.W. 2001. Evidence of three subspecies in Trifolium nigrescens Viv. Ann. Bot. 87: 683–691

    Article  CAS  Google Scholar 

  • Wolda H. (1981). Similarity indices, sample size and diversity. Ecologia 50: 296–302

    Google Scholar 

  • Zhang Q., Saghai-Maroof M.A., Lu T.Y. and Shen B.Z. 1992. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor. Appl. Genet. 83: 495–499

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Missaoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Missaoui, A.M., Paterson, A.H. & Bouton, J.H. Molecular Markers for the Classification of Switchgrass (Panicum virgatum L.) Germplasm and to Assess Genetic Diversity in Three Synthetic Switchgrass Populations. Genet Resour Crop Evol 53, 1291–1302 (2006). https://doi.org/10.1007/s10722-005-3878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-005-3878-9

Keywords

Navigation