Skip to main content
Log in

Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Pineapple (Ananas comosus (L.) Merr.) cultivars, often derived from somatic mutations, are propagated vegetatively. It has been suggested by isozyme data that there is little genetic variation among Smooth Cayenne cultivars. A thorough investigation of the genetic variation within the cultivated speciesAnanas comosus, particularly among commercial cultivars, will provide critical information needed for crop improvement and cultivar protection. One-hundred and forty-eight accessions ofA. comosus and 14 accessions of related species were evaluated with AFLP markers. The average genetic similarity ofA. comosus was 0.735 ranging from 0.549 to 0.972, suggesting a high degree of genetic variation within this species. With AFLP markers, discrete DNA fingerprints were detected for each commercial cultivar, breeding line, and intra-specific hybrid. Self-incompatibility, high levels of somatic mutation, and intraspecific hybridization may account for this high degree of variation. However, major cultivar groups of pineapple, such as Cayenne, Spanish, and Queen, could not be distinctively separated. These cultivar groups are based on morphological similarity, and the similar appearance can be caused by a few mutations that occurred on different genetic background. Our results suggest that there is abundant genetic variation within existing pineapple germplasm for selection, and discrete DNA fingerprinting patterns for commercial cultivars can be detected for cultivar protection. The genetic diversity and relationships of fourAnanas species are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aradhya M.K., Zee F. and Manshardt R.M. 1994. Isozyme variation in cultivated and wild pineapple. Euphytica 79: 87–99.

    Article  CAS  Google Scholar 

  • Brewbaker J.L. and Gorrez D.D. 1967. Genetics of self-incompatibility in the monocot genera,Ananas (pineapple) andGasteria. Am. J. Bot. 54: 611–616.

    Google Scholar 

  • Breyne P., Rombaut D., van Gysel A., van Montagu M. and Gerats T. 1999. AFLP analysis of genetic diversity within and betweenArabidopsis thaliana ecotypes. Mol. Gen. Genet. 261: 627–636.

    Article  CAS  PubMed  Google Scholar 

  • Cervera M.T., Cabezas J.A. and Sancha J.C. 1998. Application of AFLPs to the characterization of grapevineVitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor. Appl. Genet. 97: 51–59.

    Article  CAS  Google Scholar 

  • Chittenden L.M., Schertz K.F., Lin Y.R., Wing R.A. and Paterson A.H. 1994. A detainled RFLP map ofSorghum bicolor ×S. propinquum, suitable for high-density mapping, suggests ancestral duplication forSorghum chromosomes of chromosomal segments. Theor. Appl. Genet. 87: 925–933.

    Article  CAS  Google Scholar 

  • Collins J.L. 1949. History, taxonomy and culture of the pineapple. Econ. Bot. 3: 335–359.

    Google Scholar 

  • Collins J.L. 1960. The Pineapple. Interscience Publishers Inc., New York, USA.

    Google Scholar 

  • DeWald M.G., Moore G.A. and Sherman W.B. 1988. Identification of pineapple cultivars by isozyme genotypes. J. Am. Soc. Hort. Sci. 113: 935–938.

    Google Scholar 

  • DeWald M.G., Moore G.A. and Sherman W.B. 1992. Isozyme inAnanas (Pineapple): genetics and usefulness in taxonomy. J. Am. Soc. Hort. Sci. 117: 491–496.

    CAS  Google Scholar 

  • Duval M.F. and d’Eeckenbrugge G. 1993. Genetic variability in the genus Ananas. Acta Hort. 334: 27–32.

    Google Scholar 

  • Duval M.F., Noyer J.L., Perrier X., d’Eeckenbrugge G. and Hamon P. 2001. Molecular diversity in pineapple assessed by RFLP markers. Theor. Appl. Genet. 102: 83–90.

    Article  CAS  Google Scholar 

  • Han T., DeJeu M., VanEck H. and Jacobsen E. 2000. Genetic diversity of Chilean and BrazilianAlstroemeria species assessed by AFLP analysis. Heredity 84: 564–569.

    Article  PubMed  Google Scholar 

  • Kaeppler S.M., Kaeppler H.F. and Rhee Y. 2000. Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 43: 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Kim M.S., Moore P.H., Zee F., Fitch M.M.M., Steiger D.L., Manshardt R.M., Paull R.E., Drew R.A., Sekioka T. and Ming R. 2003. Genetic diversity ofCarica papaya L. as revealed by AFLP markers. Genome 45: 503–512.

    Article  Google Scholar 

  • Kinjo K. 1993. Inheritance of leaf margin spine in pineapple. Acta Hort. 334: 59–66.

    Google Scholar 

  • Noyer J.L. 1991. Etude preliminaire de la diversite genetique du genreAnanas par les RFLPs. Fruits (numero specialAnanas): 372–375.

  • Noyer J.L., Lanaud C., d’Eeckenbrugge D. and Duval M.F. 1995. RFLP study on rDNA variability inAnanas genus. Acta Hort. 425: 153–159.

    Google Scholar 

  • Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S. and Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238.

    Article  CAS  Google Scholar 

  • Ray I.M. and Bingham E.T. 1990. Inheritance of a mutable phenotype that is activated in alfalfa tissue culture. Genome 34: 35–40.

    Google Scholar 

  • Robinson J.P. and Harris S.A. 1999. Amplified fragment length polymorphisms and microsatellites: a phylogenetic perspective. In: Gillet E.M. (ed.), Molecular Tools for Biodiversity. http://webdoc.sub.gwdg.de/ebook/y/1999/whichmarker/index.htm

  • Samuels G. 1970. Pineapple cultivars. Am. Soc. Hort. Sci. Proc. 14: 13–24.

    Google Scholar 

  • Sneath P.H.A. and Sokal R.R. 1973. Numerical Taxonomy. Freeman, San Francisco, USA.

    Google Scholar 

  • Sokal R.R. and Michener C.D. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38: 1409–1438.

    Google Scholar 

  • Steiger D.L., Nagai C., Moore P.H., Morden C.W., Osgood R.V. and Ming R. 2003. AFLP analysis of genetic diversity within and amongCoffea arabica cultivars. Theor. Appl. Genet. 105: 209–215.

    Google Scholar 

  • Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. 1995. AFLP: a new technique for DNA finger-printing. Nucleic Acids Res. 23: 4407–4414.

    CAS  PubMed  Google Scholar 

  • Wakasa K. 1979. Variation in the plants differentiated from the tissue culture of pineapple. Jpn. J. Breed. 29: 13–22.

    Google Scholar 

  • Williams D.D.F. and Fleisch H. 1993. Historical review of pineapple breeding in Hawaii. Acta Hort. 334: 67–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, C.Y., Nagai, C., Moore, P.H. et al. Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers. Genet Resour Crop Evol 51, 815–825 (2005). https://doi.org/10.1007/s10722-005-0005-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-005-0005-x

Key words

Navigation