Skip to main content

Advertisement

Log in

Sialylation of cell surface glycoconjugates modulates cytosolic galectin-mediated responses upon organelle damage

Minireview

  • Mini Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sialylation is an important terminal modification of glycoconjugates that mediate diverse functions in physiology and disease. In this review we focus on how altered cell surface sialylation status is sensed by cytosolic galectins when the integrity of intracellular vesicles or organelles is compromised to expose luminal glycans to the cytosolic milieu, and how this impacts galectin-mediated cellular responses. In addition, we discuss the roles of mammalian sialidases on the cell surface, in the organelle lumen and cytosol, and raise the possibility that intracellular glycan processing may be critical in controlling various galectin-mediated responses when cells encounter stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Liu, F.T., Rabinovich, G.A.: Galectins as modulators of tumour progression. Nat. Rev. Cancer. 5(1), 29–41 (2005). https://doi.org/10.1038/nrc1527

    Article  CAS  PubMed  Google Scholar 

  2. Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W.E., Yagi, F., Kasai, K.: Oligosaccharide specificity of galectins: A search by frontal affinity chromatography. Biochim. Biophys. Acta. 1572(2–3), 232–254 (2002). https://doi.org/10.1016/s0304-4165(02)00311-2

    Article  CAS  PubMed  Google Scholar 

  3. Hughes, R.C.: Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta. 1473(1), 172–185 (1999). https://doi.org/10.1016/s0304-4165(99)00177-4

    Article  CAS  PubMed  Google Scholar 

  4. Liu, F.T., Stowell, S.R.: The role of galectins in immunity and infection. Nat. Rev. Immunol. 1–16 (2023). https://doi.org/10.1038/s41577-022-00829-7

  5. Nabi, I.R., Shankar, J., Dennis, J.W.: The galectin lattice at a glance. J. Cell. Sci. 128(13), 2213–2219 (2015). https://doi.org/10.1242/jcs.151159

    Article  CAS  PubMed  Google Scholar 

  6. Hong, M.H., Weng, I.C., Li, F.Y., Lin, W.H., Liu, F.T.: Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responses. J. Biomed. Sci. 28(1), 16 (2021). https://doi.org/10.1186/s12929-021-00713-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, F.T., Patterson, R.J., Wang, J.L.: Intracellular functions of galectins. Biochim. Biophys. Acta. 1572(2–3), 263–273 (2002). https://doi.org/10.1016/s0304-4165(02)00313-6

    Article  CAS  PubMed  Google Scholar 

  8. Kelm, S., Schauer, R.: Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175, 137–240 (1997). https://doi.org/10.1016/s0074-7696(08)62127-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lehmann, F., Tiralongo, E., Tiralongo, J.: Sialic acid-specific lectins: Occurrence, specificity and function. Cell. Mol. Life Sci. 63(12), 1331–1354 (2006). https://doi.org/10.1007/s00018-005-5589-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schauer, R.: Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 19(5), 507–514 (2009). https://doi.org/10.1016/j.sbi.2009.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Varki, N.M., Varki, A.: Diversity in cell surface sialic acid presentations: Implications for biology and disease. Lab. Invest. 87(9), 851–857 (2007). https://doi.org/10.1038/labinvest.3700656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lewis, A.L., Chen, X., Schnaar, R.L., Varki, A.: Sialic Acids and Other Nonulosonic Acids. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology. pp. 185–204. Cold Spring Harbor Laboratory Press Copyright © 2022 The Consortium of Glycobiology Editors, La Jolla, California; published by Cold Spring Harbor Laboratory Press; doi: (2022). https://doi.org/10.1101/glycobiology.4e.15. All rights reserved., Cold Spring Harbor (NY)

  13. Cavalcante, T., Medeiros, M.M., Mule, S.N., Palmisano, G., Stolf, B.S.: The role of sialic acids in the establishment of infections by pathogens, with Special Focus on Leishmania. Front. Cell. Infect. Microbiol. 11 (2021). https://doi.org/10.3389/fcimb.2021.671913

  14. Stowell, S.R., Arthur, C.M., Mehta, P., Slanina, K.A., Blixt, O., Leffler, H., Smith, D.F., Cummings, R.D.: Galectin-1, -2, and – 3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283(15), 10109–10123 (2008). https://doi.org/10.1074/jbc.M709545200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhuo, Y., Bellis, S.L.: Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J. Biol. Chem. 286(8), 5935–5941 (2011). https://doi.org/10.1074/jbc.R110.191429

    Article  CAS  PubMed  Google Scholar 

  16. Cagnoni, A.J., Troncoso, M.F., Rabinovich, G.A., Mariño, K.V., Elola, M.T.: Full-length galectin-8 and separate carbohydrate recognition domains: The whole is greater than the sum of its parts? Biochem. Soc. Trans. 48(3), 1255–1268 (2020). https://doi.org/10.1042/bst20200311

    Article  CAS  PubMed  Google Scholar 

  17. Stowell, S.R., Arthur, C.M., Slanina, K.A., Horton, J.R., Smith, D.F., Cummings, R.D.: Dimeric Galectin-8 induces phosphatidylserine exposure in Leukocytes through Polylactosamine Recognition by the C-terminal domain *. J. Biol. Chem. 283(29), 20547–20559 (2008). https://doi.org/10.1074/jbc.M802495200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beatty, W.L., Rhoades, E.R., Hsu, D.K., Liu, F.T., Russell, D.G.: Association of a macrophage galactoside-binding protein with Mycobacterium-containing phagosomes. Cell. Microbiol. 4(3), 167–176 (2002). https://doi.org/10.1046/j.1462-5822.2002.00183.x

    Article  CAS  PubMed  Google Scholar 

  19. Dupont, N., Lacas-Gervais, S., Bertout, J., Paz, I., Freche, B., Van Nhieu, G.T., van der Goot, F.G., Sansonetti, P.J., Lafont, F.: Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell. Host Microbe. 6(2), 137–149 (2009). https://doi.org/10.1016/j.chom.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  20. Paz, I., Sachse, M., Dupont, N., Mounier, J., Cederfur, C., Enninga, J., Leffler, H., Poirier, F., Prevost, M.C., Lafont, F., Sansonetti, P.: Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell. Microbiol. 12(4), 530–544 (2010). https://doi.org/10.1111/j.1462-5822.2009.01415.x

    Article  CAS  PubMed  Google Scholar 

  21. Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A., Randow, F.: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 482(7385), 414–418 (2012). https://doi.org/10.1038/nature10744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng, Y.L., Wu, Y.W., Kuo, C.F., Lu, S.L., Liu, F.T., Anderson, R., Lin, C.F., Liu, Y.L., Wang, W.Y., Chen, Y.D., Zheng, P.X., Wu, J.J., Lin, Y.S.: Galectin-3 inhibits Galectin-8/Parkin-Mediated ubiquitination of Group A Streptococcus. mBio. 8(4) (2017). https://doi.org/10.1128/mBio.00899-17

  23. Feeley, E.M., Pilla-Moffett, D.M., Zwack, E.E., Piro, A.S., Finethy, R., Kolb, J.P., Martinez, J., Brodsky, I.E., Coers, J.: Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc. Natl. Acad. Sci. U S A. 114(9), E1698–e1706 (2017). https://doi.org/10.1073/pnas.1615771114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mansilla Pareja, M.E., Bongiovanni, A., Lafont, F., Colombo, M.I.: Alterations of the Coxiella burnetii replicative vacuole membrane Integrity and Interplay with the Autophagy Pathway. Front. Cell. Infect. Microbiol. 7, 112 (2017). https://doi.org/10.3389/fcimb.2017.00112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weng, I.C., Chen, H.L., Lo, T.H., Lin, W.H., Chen, H.Y., Hsu, D.K., Liu, F.T.: Cytosolic galectin-3 and – 8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology. 28(6), 392–405 (2018). https://doi.org/10.1093/glycob/cwy017

    Article  CAS  PubMed  Google Scholar 

  26. Li, F.Y., Weng, I.C., Lin, C.H., Kao, M.C., Wu, M.S., Chen, H.Y., Liu, F.T.: Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology. 29(2), 151–162 (2019). https://doi.org/10.1093/glycob/cwy095

    Article  CAS  PubMed  Google Scholar 

  27. Maier, O., Marvin, S.A., Wodrich, H., Campbell, E.M., Wiethoff, C.M.: Spatiotemporal dynamics of adenovirus membrane rupture and endosomal escape. J. Virol. 86(19), 10821–10828 (2012). https://doi.org/10.1128/jvi.01428-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Montespan, C., Marvin, S.A., Austin, S., Burrage, A.M., Roger, B., Rayne, F., Faure, M., Campell, E.M., Schneider, C., Reimer, R., Grünewald, K., Wiethoff, C.M., Wodrich, H.: Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog. 13(2) (2017). https://doi.org/10.1371/journal.ppat.1006217 e1006217

  29. Staring, J., von Castelmur, E., Blomen, V.A., van den Hengel, L.G., Brockmann, M., Baggen, J., Thibaut, H.J., Nieuwenhuis, J., Janssen, H., van Kuppeveld, F.J., Perrakis, A., Carette, J.E., Brummelkamp, T.R.: PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature. 541(7637), 412–416 (2017). https://doi.org/10.1038/nature21032

    Article  CAS  PubMed  Google Scholar 

  30. Falcon, B., Noad, J., McMahon, H., Randow, F., Goedert, M.: Galectin-8-mediated selective autophagy protects against seeded tau aggregation. J. Biol. Chem. 293(7), 2438–2451 (2018). https://doi.org/10.1074/jbc.M117.809293

    Article  CAS  PubMed  Google Scholar 

  31. Freeman, D., Cedillos, R., Choyke, S., Lukic, Z., McGuire, K., Marvin, S., Burrage, A.M., Sudholt, S., Rana, A., O’Connor, C., Wiethoff, C.M., Campbell, E.M.: Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS One. 8(4) (2013). https://doi.org/10.1371/journal.pone.0062143 e62143

  32. Siew, J.J., Chen, H.-M., Chen, H.-Y., Chen, H.-L., Chen, C.-M., Soong, B.-W., Wu, Y.-R., Chang, C.-P., Chan, Y.-C., Lin, C.-H., Liu, F.-T., Chern, Y.: Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease. Nat. Commun. 10(1), 3473 (2019). https://doi.org/10.1038/s41467-019-11441-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maejima, I., Takahashi, A., Omori, H., Kimura, T., Takabatake, Y., Saitoh, T., Yamamoto, A., Hamasaki, M., Noda, T., Isaka, Y., Yoshimori, T.: Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. Embo j. 32(17), 2336–2347 (2013). https://doi.org/10.1038/emboj.2013.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Unno, R., Kawabata, T., Taguchi, K., Sugino, T., Hamamoto, S., Ando, R., Okada, A., Kohri, K., Yoshimori, T., Yasui, T.: Deregulated MTOR (mechanistic target of rapamycin kinase) is responsible for autophagy defects exacerbating kidney stone development. Autophagy. 16(4), 709–723 (2020). https://doi.org/10.1080/15548627.2019.1635382

    Article  CAS  PubMed  Google Scholar 

  35. Wittrup, A., Ai, A., Liu, X., Hamar, P., Trifonova, R., Charisse, K., Manoharan, M., Kirchhausen, T., Lieberman, J.: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33(8), 870–876 (2015). https://doi.org/10.1038/nbt.3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, X., Khambu, B., Zhang, H., Gao, W., Li, M., Chen, X., Yoshimori, T., Yin, X.M.: Autophagy induced by calcium phosphate precipitates targets damaged endosomes. J. Biol. Chem. 289(16), 11162–11174 (2014). https://doi.org/10.1074/jbc.M113.531855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kilchrist, K.V., Dimobi, S.C., Jackson, M.A., Evans, B.C., Werfel, T.A., Dailing, E.A., Bedingfield, S.K., Kelly, I.B., Duvall, C.L.: Gal8 visualization of endosome disruption predicts carrier-mediated Biologic Drug Intracellular Bioavailability. ACS Nano. 13(2), 1136–1152 (2019). https://doi.org/10.1021/acsnano.8b05482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia, J., Abudu, Y.P., Claude-Taupin, A., Gu, Y., Kumar, S., Choi, S.W., Peters, R., Mudd, M.H., Allers, L., Salemi, M., Phinney, B., Johansen, T., Deretic, V.: Galectins Control mTOR in response to endomembrane damage. Mol. Cell. 70(1), 120–135e128 (2018). https://doi.org/10.1016/j.molcel.2018.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, X., Khambu, B., Zhang, H., Gao, W., Li, M., Chen, X., Yoshimori, T., Yin, X.-M.: Autophagy Induced by Calcium phosphate precipitates targets damaged Endosomes *. J. Biol. Chem. 289(16), 11162–11174 (2014). https://doi.org/10.1074/jbc.M113.531855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chauhan, S., Kumar, S., Jain, A., Ponpuak, M., Mudd, M.H., Kimura, T., Choi, S.W., Peters, R., Mandell, M., Bruun, J.A., Johansen, T., Deretic, V.: TRIMs and galectins globally cooperate and TRIM16 and Galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev. Cell. 39(1), 13–27 (2016). https://doi.org/10.1016/j.devcel.2016.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lewis, A.L., Lewis, W.G.: Host sialoglycans and bacterial sialidases: A mucosal perspective. Cell. Microbiol. 14(8), 1174–1182 (2012). https://doi.org/10.1111/j.1462-5822.2012.01807.x

    Article  CAS  PubMed  Google Scholar 

  42. Huang, Y.L., Chassard, C., Hausmann, M., von Itzstein, M., Hennet, T.: Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat. Commun. 6, 8141 (2015). https://doi.org/10.1038/ncomms9141

    Article  CAS  PubMed  Google Scholar 

  43. Morosi, L.G., Cutine, A.M., Cagnoni, A.J., Manselle-Cocco, M.N., Croci, D.O., Merlo, J.P., Morales, R.M., May, M., Pérez-Sáez, J.M., Girotti, M.R., Méndez-Huergo, S.P., Pucci, B., Gil, A.H., Huernos, S.P., Docena, G.H., Sambuelli, A.M., Toscano, M.A., Rabinovich, G.A., Mariño, K.V.: Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits. Sci. Adv. 7(25) (2021). https://doi.org/10.1126/sciadv.abf8630

  44. Yang, W.H., Westman, J.S., Heithoff, D.M., Sperandio, M., Cho, J.W., Mahan, M.J., Marth, J.D.: Neu3 neuraminidase induction triggers intestinal inflammation and colitis in a model of recurrent human food-poisoning. Proc. Natl. Acad. Sci. U S A. 118(29) (2021). https://doi.org/10.1073/pnas.2100937118

  45. McAuley, J.L., Gilbertson, B.P., Trifkovic, S., Brown, L.E., McKimm-Breschkin, J.L.: Influenza Virus Neuraminidase structure and functions. Front. Microbiol. 10 (2019). https://doi.org/10.3389/fmicb.2019.00039

  46. Suzuki, T., Takahashi, T., Guo, C.T., Hidari, K.I., Miyamoto, D., Goto, H., Kawaoka, Y., Suzuki, Y.: Sialidase activity of influenza a virus in an endocytic pathway enhances viral replication. J. Virol. 79(18), 11705–11715 (2005). https://doi.org/10.1128/jvi.79.18.11705-11715.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Villanueva, M.S., Beckers, C.J., Pamer, E.G.: Infection with Listeria monocytogenes impairs sialic acid addition to host cell glycoproteins. J. Exp. Med. 180(6), 2137–2145 (1994). https://doi.org/10.1084/jem.180.6.2137

    Article  CAS  PubMed  Google Scholar 

  48. Flieger, A., Frischknecht, F., Häcker, G., Hornef, M.W., Pradel, G.: Pathways of host cell exit by intracellular pathogens. Microb. Cell. 5(12), 525–544 (2018). https://doi.org/10.15698/mic2018.12.659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rubin-de-Celis, S.S., Uemura, H., Yoshida, N., Schenkman, S.: Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cell. Microbiol. 8(12), 1888–1898 (2006). https://doi.org/10.1111/j.1462-5822.2006.00755.x

    Article  CAS  PubMed  Google Scholar 

  50. Freire-de-Lima, L., da Fonseca, L.M., da Silva, V.A., da Costa, K.M., Morrot, A., Freire-de-Lima, C.G., Previato, J.O., Mendonça-Previato, L.: Modulation of cell sialoglycophenotype: A stylish mechanism adopted by Trypanosoma cruzi to ensure its persistence in the infected host. Front. Microbiol. 7, 698 (2016). https://doi.org/10.3389/fmicb.2016.00698

    Article  PubMed  PubMed Central  Google Scholar 

  51. Puigdellívol Cañadell, M., Allendorf, D., Brown, G.: Sialylation and Galectin-3 in microglia-mediated neuroinflammation and neurodegeneration. Front. Cell. Neurosci. 14 (2020). https://doi.org/10.3389/fncel.2020.00162

  52. Desplats, P.A., Denny, C.A., Kass, K.E., Gilmartin, T., Head, S.R., Sutcliffe, J.G., Seyfried, T.N., Thomas, E.A.: Glycolipid and ganglioside metabolism imbalances in Huntington’s disease. Neurobiol. Dis. 27(3), 265–277 (2007). https://doi.org/10.1016/j.nbd.2007.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong, M.H., Lin, W.H., Weng, I.C., Hung, Y.H., Chen, H.L., Chen, H.Y., Chen, P., Lin, C.H., Yang, W.Y., Liu, F.T.: Intracellular galectins control cellular responses commensurate with cell surface carbohydrate composition. Glycobiology. 30(1), 49–57 (2019). https://doi.org/10.1093/glycob/cwz075

    Article  CAS  PubMed  Google Scholar 

  54. Ideo, H., Matsuzaka, T., Nonaka, T., Seko, A., Yamashita, K.: Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans. J. Biol. Chem. 286(13), 11346–11355 (2011). https://doi.org/10.1074/jbc.M110.195925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Glanz, V.Y., Myasoedova, V.A., Grechko, A.V., Orekhov, A.N.: Sialidase activity in human pathologies. Eur. J. Pharmacol. 842, 345–350 (2019). https://doi.org/10.1016/j.ejphar.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  56. Pshezhetsky, A.V., Hinek, A.: Where catabolism meets signalling: Neuraminidase 1 as a modulator of cell receptors. Glycoconj. J. 28(7), 441–452 (2011). https://doi.org/10.1007/s10719-011-9350-5

    Article  CAS  PubMed  Google Scholar 

  57. Pshezhetsky, A.V., Ashmarina, L.I.: Desialylation of surface receptors as a new dimension in cell signaling. Biochem. (Mosc). 78(7), 736–745 (2013). https://doi.org/10.1134/s0006297913070067

    Article  CAS  Google Scholar 

  58. Mozzi, A., Forcella, M., Riva, A., Difrancesco, C., Molinari, F., Martin, V., Papini, N., Bernasconi, B., Nonnis, S., Tedeschi, G., Mazzucchelli, L., Monti, E., Fusi, P., Frattini, M.: NEU3 activity enhances EGFR activation without affecting EGFR expression and acts on its sialylation levels. Glycobiology. 25(8), 855–868 (2015). https://doi.org/10.1093/glycob/cwv026

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, X., Dou, P., Akhtar, M.L., Liu, F., Hu, X., Yang, L., Yang, D., Zhang, X., Li, Y., Qiao, S., Li, K., Tang, R., Zhan, C., Ma, Y., Cheng, Q., Bai, Y., Han, F., Nie, H., Li, Y.: NEU4 inhibits motility of HCC cells by cleaving sialic acids on CD44. Oncogene. 40(35), 5427–5440 (2021). https://doi.org/10.1038/s41388-021-01955-7

    Article  CAS  PubMed  Google Scholar 

  60. Shiozaki, K., Yamaguchi, K., Takahashi, K., Moriya, S., Miyagi, T.: Regulation of sialyl Lewis antigen expression in colon cancer cells by sialidase NEU4. J. Biol. Chem. 286(24), 21052–21061 (2011). https://doi.org/10.1074/jbc.M111.231191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takahashi, K., Mitoma, J., Hosono, M., Shiozaki, K., Sato, C., Yamaguchi, K., Kitajima, K., Higashi, H., Nitta, K., Shima, H., Miyagi, T.: Sialidase NEU4 hydrolyzes polysialic acids of neural cell adhesion molecules and negatively regulates neurite formation by hippocampal neurons. J. Biol. Chem. 287(18), 14816–14826 (2012). https://doi.org/10.1074/jbc.M111.324186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yogalingam, G., Bonten, E.J., van de Vlekkert, D., Hu, H., Moshiach, S., Connell, S.A., d’Azzo, A.: Neuraminidase 1 is a negative regulator of lysosomal exocytosis. Dev. Cell. 15(1), 74–86 (2008). https://doi.org/10.1016/j.devcel.2008.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seyrantepe, V., Poupetova, H., Froissart, R., Zabot, M.T., Maire, I., Pshezhetsky, A.V.: Molecular pathology of NEU1 gene in sialidosis. Hum. Mutat. 22(5), 343–352 (2003). https://doi.org/10.1002/humu.10268

    Article  CAS  PubMed  Google Scholar 

  64. Lukong, K.E., Seyrantepe, V., Landry, K., Trudel, S., Ahmad, A., Gahl, W.A., Lefrancois, S., Morales, C.R., Pshezhetsky, A.V.: Intracellular distribution of lysosomal sialidase is controlled by the internalization signal in its cytoplasmic tail. J. Biol. Chem. 276(49), 46172–46181 (2001). https://doi.org/10.1074/jbc.M104547200

    Article  CAS  PubMed  Google Scholar 

  65. Annunziata, I., Patterson, A., Helton, D., Hu, H., Moshiach, S., Gomero, E., Nixon, R., d’Azzo, A.: Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat. Commun. 4, 2734 (2013). https://doi.org/10.1038/ncomms3734

    Article  CAS  PubMed  Google Scholar 

  66. Abdulkhalek, S., Szewczuk, M.R.: Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and – 9 activation, cellular signaling and pro-inflammatory responses. Cell. Signal. 25(11), 2093–2105 (2013). https://doi.org/10.1016/j.cellsig.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  67. Miyagi, T., Yamamoto, K.: Review sialidase NEU3 and its pathological significance. Glycoconj. J. (2022). https://doi.org/10.1007/s10719-022-10067-7

    Article  PubMed  Google Scholar 

  68. Ballabio, A., Gieselmann, V.: Lysosomal disorders: From storage to cellular damage. Biochim. Biophys. Acta. 1793(4), 684–696 (2009). https://doi.org/10.1016/j.bbamcr.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  69. New-Aaron, M., Thomes, P.G., Ganesan, M., Dagur, R.S., Donohue, T.M. Jr., Kusum, K.K., Poluektova, L.Y., Osna, N.A.: Alcohol-Induced lysosomal damage and suppression of Lysosome Biogenesis Contribute to Hepatotoxicity in HIV-Exposed liver cells. Biomolecules. 11(10) (2021). https://doi.org/10.3390/biom11101497

  70. Oku, Y., Murakami, K., Irie, K., Hoseki, J., Sakai, Y.: Synthesized Aβ42 caused intracellular oxidative damage, leading to cell death, via Lysosome rupture. Cell. Struct. Funct. 42(1), 71–79 (2017). https://doi.org/10.1247/csf.17006

    Article  CAS  PubMed  Google Scholar 

  71. Cai, B.H., Wu, P.H., Chou, C.K., Huang, H.C., Chao, C.C., Chung, H.Y., Lee, H.Y., Chen, J.Y., Kannagi, R.: Synergistic activation of the NEU4 promoter by p73 and AP2 in colon cancer cells. Sci. Rep. 9(1), 950 (2019). https://doi.org/10.1038/s41598-018-37521-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Reily, C., Stewart, T.J., Renfrow, M.B., Novak, J.: Glycosylation in health and disease. Nat. Rev. Nephrol. 15(6), 346–366 (2019). https://doi.org/10.1038/s41581-019-0129-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Academia Sinica and the Ministry of Science and Technology in Taiwan (MOST 109-2320-B-001-024-MY3).

Author information

Authors and Affiliations

Authors

Contributions

ICW and HLC wrote the manuscript, FTL edited the manuscript, WHL prepared the figure. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fu-Tong Liu.

Ethics declarations

Competing interests

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, IC., Chen, HL., Lin, WH. et al. Sialylation of cell surface glycoconjugates modulates cytosolic galectin-mediated responses upon organelle damage. Glycoconj J 40, 295–303 (2023). https://doi.org/10.1007/s10719-023-10112-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10112-z

Keywords

Navigation