Skip to main content

Advertisement

Log in

Up‐regulation of FUT8 inhibits TGF-β1-induced activation of hepatic stellate cells during liver fibrogenesis

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Liver fibrosis is a continuous wound healing response caused by chronic liver injury, and the activation of hepatic stellate cells (HSCs) is considered as the main event for it. Core fucosylation catalyzed by FUT8 refers to adding the fucosyl moiety to the innermost GlcNAc residue of N-linked oligosaccharides and is involved in many biological processes such as cell differentiation, migration, and signaling transduction. Aberrant core fucosylation is associated with a variety of diseases including cardiovascular disease, tumors and neuroinflammation, but much less is understood in liver fibrosis. Herein, we reported FUT8 mRNA level was increased in patients with liver fibrosis from GEO database and positively correlated with fibrosis progression. FUT8 expression and the core fucosylation were also elevated in TAA-induced mouse liver fibrosis model, and were mainly distributed in the fibrous septum of mouse liver. TGF-β1, as the most pro-fibrogenic cytokine, could promote the expression of FUT8 and total core fucosylation levels in HSCs in vitro. However, up-regulation of FUT8 in turn inhibited TGF-β1-induced trans-differentiation, migration and pro-fibrogenic signaling pathways in HSCs. In conclusion, our results suggest that the up-regulation of FUT8 inhibits TGF-β1-induced HSC activation in a negative feedback loop, and provide potential new therapeutic strategy for liver fibrosis by targeting FUT8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix.

HBV:

hepatitis B virus.

HCV:

hepatitis C virus.

HCC:

hepatocellular carcinoma.

HSCs:

hepatic stellate cells.

MFs:

myofibroblasts.

α-SMA:

α- smooth muscle actin.

FUT8:

α1,6-fucosyltransferase.

FUTs:

fucosyltransferases.

LCA:

Lens culinaris lectin.

TAA:

Thioacetamide.

GEO:

Gene Expression Omnibus.

TGF-β1:

Transforming growth factor β1.

TGF-β R:

TGF-β receptors.

TIMP:

tissue inhibitor of metalloproteinase.

MAPK:

mitogen activated protein kinases.

GnT-V:

N-acetylglucosamine aminotransferase V.

IHC staining:

Immunohistochemical staining.

References

  1. Trautwein, C., Friedman, S.L., Schuppan, D., Pinzani, M.: Hepatic fibrosis: Concept to treatment. J. Hepatol. 62(1, Supplement), S15-S24 (2015)  https://doi.org/10.1016/j.jhep.2015.02.039

  2. Aydin, M.M., Akcali, K.C.: Liver fibrosis. Turk. J. Gastroenterol. 29(1), 14–21 (2018). https://doi.org/10.5152/tjg.2018.17330

    Article  PubMed  PubMed Central  Google Scholar 

  3. Parola, M., Pinzani, M.: Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Asp. Med. 65, 37–55 (2019). https://doi.org/10.1016/j.mam.2018.09.002

    Article  CAS  Google Scholar 

  4. Schuppan, D., Ashfaq-Khan, M., Yang, A.T., Kim, Y.O.: Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol. 68–69, 435–451 (2018). https://doi.org/10.1016/j.matbio.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  5. Tacke, F., Weiskirchen, R.: An update on the recent advances in antifibrotic therapy. Expert Rev. Gastroenterol. Hepatol. 12(11), 1143–1152 (2018). https://doi.org/10.1080/17474124.2018.1530110

    Article  CAS  PubMed  Google Scholar 

  6. Karin, D., Koyama, Y., Brenner, D., Kisseleva, T.: The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation 92(3), 84–92 (2016). https://doi.org/10.1016/j.diff.2016.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsuchida, T., Friedman, S.L.: Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14(7), 397–411 (2017). https://doi.org/10.1038/nrgastro.2017.38

    Article  CAS  PubMed  Google Scholar 

  8. Meng, X.M., Nikolic-Paterson D.J., Lan, H.Y.: TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 12(6), 25–38 (2016). https://doi.org/10.1038/nrneph.2016.48

  9. Dewidar, B., Meyer, C., Dooley, S., Meindl, B., Nadja: TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated: 2019. Cell 8(11), 1419 (2019). https://doi.org/10.3390/cells8111419

  10. Xu, F., Liu, C., Zhou, D., Zhang, L.: TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J. Histochem. Cytochem. 64(3), 157–167 (2016). https://doi.org/10.1369/0022155415627681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fabregat, I., Moreno-Càceres, J., Sánchez, A., Dooley, S., Dewidar, B., Giannelli, G., Ten, D.P.: TGF-β signalling and liver disease. FEBS J. 283(12), 2219–2232 (2016). https://doi.org/10.1111/febs.13665

    Article  CAS  PubMed  Google Scholar 

  12. Cai, X., Wang, J., Wang, J., Zhou, Q., Yang, B., He, Q., Weng, Q.: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol. Res. 155, 104720 (2020). https://doi.org/10.1016/j.phrs.2020.104720

    Article  CAS  PubMed  Google Scholar 

  13. Hu, H.H., Chen, D.Q., Wang, Y.N., Feng, Y.L., Cao, G., Vaziri, N.D., Zhao, Y.Y. : New insights into TGF-β/Smad signaling in tissue fibrosis.Chem Biol Interact. 292, 76–83 (2018). https://doi.org/10.1016/j.cbi.2018.07.008

  14. Schneider, M., Al-Shareffi, E., Haltiwanger, R.S.: Biological functions of fucose in mammals. Glycobiology 27(7), 601–618 (2017). https://doi.org/10.1093/glycob/cwx034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, K., Wang, H.: Role of Fucosylation in Cancer. Zhongguo Fei Ai Za Zhi 19(11), 760–765 (2016). https://doi.org/10.3779/j.issn.1009-3419.2016.11.07

    Article  PubMed  Google Scholar 

  16. Li, J., Hsu, H., Mountz, J.D., Allen, J.G.: Unmasking Fucosylation: from cell adhesion to immune system regulation and diseases. Cell Chem. Biol. 25(5), 499–512 (2018). https://doi.org/10.1016/j.chembiol.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Shan, M., Yang, D., Dou, H., Zhang, L.: Chapter Four - Fucosylation in cancer biology and its clinical applications. In Zhang, L. (ed.) Progress in Molecular Biology and Translational Science, Vol. 162, 93–119. Academic, Cambridge (2019)

  18. Chen, L., Zhang, J., Yang, X., Liu, Y., Deng, X., Yu, C.: Lysophosphatidic acid decreased macrophage foam cell migration correlated with downregulation of fucosyltransferase 8 via HNF1α. Atherosclerosis 290, 19–30 (2019). https://doi.org/10.1016/j.atherosclerosis.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  19. Pang, X., Wang, Y., Zhang, S., Tan, Z., Guo, J., Guan, F., Li, X.: Altered susceptibility to apoptosis and N–glycan profiles of hematopoietic KG1a cells following co–culture with bone marrow–derived stromal cells under hypoxic conditions. Oncol. Rep. 40(3), 1477–1486 (2018). https://doi.org/10.3892/or.2018.6548

    Article  CAS  PubMed  Google Scholar 

  20. Li, J., Hsu, H., Mountz, J.D., Allen, J.G.: Unmasking fucosylation: from cell adhesion to immune system regulation and diseases. Cell Chem. Biol. 25(5), 499–512 (2018). https://doi.org/10.1016/j.chembiol.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X., Gu, J., Miyoshi, E., Honke, K., Taniguchi, N.: Phenotype changes of Fut8 knockout mouse: core fucosylation is crucial for the function of growth factor receptor(s). Methods Enzymol. 417, 11–22 (2006). https://doi.org/10.1016/S0076-6879(06)17002-0

    Article  CAS  PubMed  Google Scholar 

  22. Wen, X., Liu, A., Yu, C., Wang, L., Zhou, M., Wang, N., Fang, M., Wang, W., Lin, H.: Inhibiting post-translational core fucosylation prevents vascular calcification in the model of uremia. Int. J. Biochem. Cell Biol. 79, 69–79 (2016). https://doi.org/10.1016/j.biocel.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  23. Lu, X., Zhang, D., Shoji, H., Duan, C., Zhang, G., Isaji, T., Wang, Y., Fukuda, T., Gu, J.: Deficiency of α1,6-fucosyltransferase promotes neuroinflammation by increasing the sensitivity of glial cells to inflammatory mediators. Biochim. Biophys. Acta Gen. Subj. 1863(3), 598–608 (2019). https://doi.org/10.1016/j.bbagen.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  24. Li, J., Hsu, H.C., Mountz, J.D., Allen, J.G.: Unmasking fucosylation: from cell adhesion to immune system regulation and diseases. Cell Chem. Biol. 25(5), 499–512 (2018). https://doi.org/10.1016/j.chembiol.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  25. Fang, M., Kang, L., Wang, X., Guo, X., Wang, W., Qin, B., Du, X., Tang, Q., Lin, H.: Inhibition of core fucosylation limits progression of diabetic kidney disease. Biochem. Biophys. Res. Commun. 520(3), 612–618 (2019). https://doi.org/10.1016/j.bbrc.2019.10.037

    Article  CAS  PubMed  Google Scholar 

  26. Jia, D., Duan, F., Peng, P., Sun, L., Liu, X., Wang, L., Wu, W., Ruan, Y., Gu, J.: Up-regulation of RACK1 by TGF-beta1 promotes hepatic fibrosis in mice. PLoS One 8(3), e60115 (2013). https://doi.org/10.1371/journal.pone.0060115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kisseleva, T., Brenner, D.: Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. (2020). https://doi.org/10.1038/s41575-020-00372-7

    Article  PubMed  Google Scholar 

  28. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. (2020). https://doi.org/10.1038/s41580-020-00294-x

  29. Vajaria, B.N., Patel, P.S.: Glycosylation: a hallmark of cancer? Glycoconj. J. 34(2), 147–156 (2017). https://doi.org/10.1007/s10719-016-9755-2

    Article  CAS  PubMed  Google Scholar 

  30. Li, X., Xu, J., Li, M., Zeng, X., Wang, J., Hu, C.: Aberrant glycosylation in autoimmune disease. Clin. Exp. Rheumatol. 38(4), 767–775 (2020)

    PubMed  Google Scholar 

  31. Schedin-Weiss, S., Winblad, B., Tjernberg, L.O.: The role of protein glycosylation in Alzheimer disease. FEBS J. 281(1), 46–62 (2014). https://doi.org/10.1111/febs.12590

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, B., Li, M.D., Yin, R., Liu, Y., Yang, Y., Mitchell-Richards, K.A., Nam, J.H., Li, R., Wang, L., Iwakiri, Y., Chung, D., Robert, M.E., Ehrlich, B.E., Bennett, A.M., Yu, J., Nathanson, M.H., Yang, X.: O-GlcNAc transferase suppresses necroptosis and liver fibrosis. JCI Insight. 4(21) (2019) https://doi.org/10.1172/jci.insight.127709

  33. Liu, J., Zhang, Z., Tu, X., Liu, J., Zhang, H., Zhang, J., Zang, Y., Zhu, J., Chen, J., Dong, L., Zhang, J.: Knockdown of N-acetylglucosaminyl transferase V ameliorates hepatotoxin-induced liver fibrosis in mice. Toxicol. Sci. 135(1), 144–155 (2013). https://doi.org/10.1093/toxsci/kft135

    Article  CAS  PubMed  Google Scholar 

  34. Shirabe, K., Bekki, Y., Gantumur, D., Araki, K., Ishii, N., Kuno, A., Narimatsu, H., Mizokami, M.: Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: more than a biomarker of liver fibrosis. J. Gastroenterol. 53(7), 819–826 (2018). https://doi.org/10.1007/s00535-017-1425-z

    Article  CAS  PubMed  Google Scholar 

  35. Blomme, B., Francque, S., Trépo, E., Libbrecht, L., Vanderschaeghe, D., Verrijken, A., Pattyn, P., Nieuwenhove, Y.V., Putte, D.V., Geerts, A., Colle, I., Delanghe, J., Moreno, C., Gaal, L.V., Callewaert, N., Vlierberghe, H.V.: N-glycan based biomarker distinguishing non-alcoholic steatohepatitis from steatosis independently of fibrosis. Dig. Liver Dis. 44(4), 315–322 (2012). https://doi.org/10.1016/j.dld.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, S., Shu, H., Luo, K., Kang, X., Zhang, Y., Lu, H., Liu, Y.: N-linked glycan changes of serum haptoglobin β chain in liver disease patients. Mol. BioSyst. 7(5), 1621–1628 (2011). https://doi.org/10.1039/c1mb05020f

    Article  CAS  PubMed  Google Scholar 

  37. Maroni, L., Hohenester, S.D., van de Graaf, S., Tolenaars, D., van Lienden, K., Verheij, J., Marzioni, M., Karlsen, T.H., Oude, E.R., Beuers, U.: Knockout of the primary sclerosing cholangitis-risk gene Fut2 causes liver disease in mice. Hepatology 66(2), 542–554 (2017). https://doi.org/10.1002/hep.29029

    Article  CAS  PubMed  Google Scholar 

  38. Ogawa, K., Kobayashi, T., Furukawa, J.I., Hanamatsu, H., Nakamura, A., Suzuki, K., Kawagishi, N., Ohara, M., Umemura, M., Nakai, M., Sho, T., Suda, G., Morikawa, K., Baba, M., Furuya, K., Terashita, K., Kobayashi, T., Onodera, M., Horimoto, T., Shinada, K., Tsunematsu, S., Tsunematsu, I., Meguro, T., Mitsuhashi, T., Hato, M., Higashino, K., Shinohara, Y., Sakamoto, N.: Tri-antennary tri-sialylated mono-fucosylated glycan of alpha-1 antitrypsin as a non-invasive biomarker for non-alcoholic steatohepatitis: a novel glycobiomarker for non-alcoholic steatohepatitis. Sci. Rep. 10(1), 321 (2020). https://doi.org/10.1038/s41598-019-56947-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, M., Wang, J., Liu, S., Wang, X., Yan, Q.: Novel function of pregnancy-associated plasma protein A: promotes endometrium receptivity by up-regulating N-fucosylation. Sci. Rep. 7(1), 5315 (2017). https://doi.org/10.1038/s41598-017-04735-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, L., Cui, W.H., Zhou, W.C., Li, D.L., Li, L.C., Zhao, P., Mo, X.T., Zhang, Z., Gao, J.: Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J. Cell. Mol. Med. 21(8), 1545–1554 (2017). https://doi.org/10.1111/jcmm.13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, C., Wu, Q., Huang, H., Chen, X., Huang, T., Li, W., Zhang, J., Liu, Y.: Caveolin-1 upregulates Fut8 expression by activating the Wnt/β-catenin pathway to enhance HCC cell proliferative and invasive ability. Cell Biol. Int. 44(11), 2202–2212 (2020). https://doi.org/10.1002/cbin.11426

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, X.P., Ai, W.B., Wan, L.Y., Zhang, Y.Q., Wu, J.F.: The roles of microRNA families in hepatic fibrosis. Cell Biosci. 7, 34 (2017). https://doi.org/10.1186/s13578-017-0161-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marcher, A.B., Bendixen, S.M., Terkelsen, M.K., Hohmann, S.S., Hansen, M.H., Larsen, B.D., Mandrup, S., Dimke, H., Detlefsen, S., Ravnskjaer, K.: Transcriptional regulation of Hepatic Stellate Cell activation in NASH. Sci. Rep. 9(1), 2324 (2019). https://doi.org/10.1038/s41598-019-39112-6

    Article  PubMed  PubMed Central  Google Scholar 

  44. Feili, X., Wu, S., Ye, W., Tu, J., Lou, L.: MicroRNA-34a-5p inhibits liver fibrosis by regulating TGF-β1/Smad3 pathway in hepatic stellate cells. Cell Biol. Int. 42(10), 1370–1376 (2018). https://doi.org/10.1002/cbin.11022

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, B., Zhu, Q., Lin, W., Wang, L.: MicroRNA-122 inhibits epithelial-mesenchymal transition of hepatic stellate cells induced by the TGF-β1/Smad signaling pathway. Exp. Ther. Med. 17(1), 284–290 (2019). https://doi.org/10.3892/etm.2018.6962

    Article  CAS  PubMed  Google Scholar 

  46. He, Y., Huang, C., Sun, X., Long, X.R., Lv, X.W., Li, J.: MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell. Signal. 24(10), 1923–1930 (2012). https://doi.org/10.1016/j.cellsig.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, L., Gao, S., Song, X., Dong, W., Zhou, H., Zhao, L., Jia, L.: Comprehensive N-glycan profiles of hepatocellular carcinoma reveal association of fucosylation with tumor progression and regulation of FUT8 by microRNAs. Oncotarget. 7(38), 61199–61214 (2016). https://doi.org/10.18632/oncotarget.11284

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bernardi, C., Soffientini, U., Piacente, F., Tonetti, M.G.: Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. PLoS One 8(10), e76540 (2013). https://doi.org/10.1371/journal.pone.0076540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, N., Deng, Y., Liu, A., Shen, N., Wang, W., Du, X., Tang, Q., Li, S., Odeh, Z., Wu, T., Lin, H.: Novel mechanism of the pericyte-myofibroblast transition in renal interstitial fibrosis: core fucosylation regulation. Sci. Rep. UK 7(1), 16914 (2017). https://doi.org/10.1038/s41598-017-17193-5

    Article  CAS  Google Scholar 

  50. Sun, Y., Sun, W., Yang, N., Liu, J., Tang, H., Li, F., Sun, X., Gao, L., Pei, F., Liu, J., Lin, H., Taihua, W.: The effect of core fucosylation-mediated regulation of multiple signaling pathways on lung pericyte activation and fibrosis. Int. J. Biochem. Cell Biol. 117, 105639 (2019). https://doi.org/10.1016/j.biocel.2019.105639

    Article  CAS  PubMed  Google Scholar 

  51. Tu, C.F., Wu, M.Y., Lin, Y.C., Kannagi, R., Yang, R.B.: FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Breast Cancer Res. 19(1), 111 (2017). https://doi.org/10.1186/s13058-017-0904-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, H., Wang, D., Wu, T., Dong, C., Shen, N., Sun, Y., Sun, Y., Xie, H., Wang, N., Shan, L.: Blocking core fucosylation of TGF-β1 receptors downregulates their functions and attenuates the epithelial-mesenchymal transition of renal tubular cells. Am. J. Physiol. Renal Physiol. 300(4), F1017–F1025 (2011). https://doi.org/10.1152/ajprenal.00426.2010

    Article  CAS  PubMed  Google Scholar 

  53. Gu, W., Fukuda, T., Isaji, T., Hashimoto, H., Wang, Y., Gu, J.: α1,6-Fucosylation regulates neurite formation via the activin/phospho-Smad2 pathway in PC12 cells: the implicated dual effects of Fut8 for TGF-β/activin-mediated signaling. FASEB J. 27(10), 3947–3958 (2013). https://doi.org/10.1096/fj.12-225805

    Article  CAS  PubMed  Google Scholar 

  54. Qin, Y., Zhong, Y., Dang, L., Zhu, M., Yu, H., Chen, W., Cui, J., Bian, H., Li, Z.: Alteration of protein glycosylation in human hepatic stellate cells activated with transforming growth factor-β1. J. Proteome 75(13), 4114–4123 (2012). https://doi.org/10.1016/j.jprot.2012.05.040

    Article  CAS  Google Scholar 

  55. Claveria-Cabello, A., Colyn, L., Arechederra, M., Urman, J.M., Berasain, C., Avila, M.A., Fernandez-Barrena, M.G.: Epigenetics in liver fibrosis: could HDACs be a therapeutic target? Cells-Basel. 9(10) (2020). https://doi.org/10.3390/cells9102321

  56. Guo, Y.C., Lu, L.G.: Antihepatic fibrosis drugs in clinical trials. J. Clin. Transl. Hepatol. 8(3), 304–312 (2020). https://doi.org/10.14218/JCTH.2020.00023

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key R&D Program of China (2018YFC0910303), and the National Natural Science Fund (31630088, 82073245, 31770855, 81802368, 31500645).

Author information

Authors and Affiliations

Authors

Contributions

MZK, XQZ and YYR conceived and designed the experiments; MZK, HW, LH, XYG, DCH, BL, MQC and JG performed the experiments;MZK, XQZ and YYR analyzed the data; MZK, XQZ and YYR wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoqing Zeng or Yuanyuan Ruan.

Ethics declarations

Conflict of interest

The authors have declared no potential conflicts of interest.

Ethics approval

All animal experiments conformed to the criteria outlined in the Guide for the Care and Use of Laboratory Animals, prepared by the National Academy of Sciences and published by the National Institutes of Health, and also were approved by the ethics committee of Fudan University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, M., Wu, H., Hu, L. et al. Up‐regulation of FUT8 inhibits TGF-β1-induced activation of hepatic stellate cells during liver fibrogenesis. Glycoconj J 38, 77–87 (2021). https://doi.org/10.1007/s10719-021-09975-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-09975-x

Keywords

Navigation