Skip to main content

Advertisement

Log in

Interactions between Sclerostin and Glycosaminoglycans

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sclerostin (SOST) is a glycoprotein having many important functions in the regulation of bone formation as a key negative regulator of Wnt signaling in bone. Surface plasmon resonance (SPR), which allows for a direct quantitative analysis of the label-free molecular interactions in real-time, has been widely used for the biophysical characterization of glycosaminoglycan (GAG)-protein interactions. In the present study, we report kinetics, structural analysis and the effects of physiological conditions (e.g., salt concentrations, Ca2+ and Zn2+concentrations) on the interactions between GAGs and recombinant human (rh) and recombinant mouse (rm) SOST using SPR. SPR results revealed that both SOSTs bind heparin with high affinity (rhSOST-heparin, KD~36 nM and rmSOST-heparin, KD~77 nM) and the shortest oligosaccharide of heparin that effectively competes with full size heparin for SOST binding is octadecasaccharide (18mer). This heparin binding protein also interacts with other highly sulfated GAGs including, disulfated-dermatan sulfate and chondroitin sulfate E. In addition, liquid chromatography-mass spectrometry was used to characterize the structure of sulfated GAGs that bound to SOST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SOST:

Sclerostin

GAG:

Glycosaminoglycan

rhSOST:

Recombinant human sclerostin

rmSOST:

Recombinant mouse sclerostin

SPR:

Surface plasmon resonance

HS:

Heparan sulfate

CSA:

Chondroitin sulfate A

CSB:

Chondroitin sulfate B

DS:

Dermatan sulfate

CSC:

Chondroitin sulfate C

CSD:

Chondroitin sulfate D

CSE:

Chondroitin sulfate E

LMWH:

Low molecular weight heparin

SA:

Streptavidin

dp:

Degree of polymerization

References

  1. Veverka, V., Henry, A.J., Slocombe, P.M., Ventom, A., Mulloy, B., Muskett, F.W., Muzylak, M., Greenslade, K., Moore, A., Zhang, L., Gong, J., Qian, X., Paszty, C., Taylor, R.J., Robinson, M.K., Carr, M.D.: Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J. Biol. Chem. 84, 10890–10900 (2009)

    Article  Google Scholar 

  2. van Bezooijen, R.L., Roelen, B.A., Visser, A., van der Wee-Pals, L., de Wilt, E., Karperien, M., Hamersma, H., Papapoulos, S.E., ten Dijke, P., Löwik, C.W.: Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199, 805–814 (2004)

    Article  Google Scholar 

  3. Winkler, D.G., Yu, C.P., Geoghegan, J.C., Ojala, E.W., Skonier, J.E., Shpektor, D., Sutherland, M.K., Latham, J.: A: Sclerostin inhibition of Wnt-3a-induced C3H10T1/2 cell differentiation is indirect and mediated by bone morphogenetic proteins. J. Biol. Chem. 279, 36293–36298 (2004)

    Article  CAS  Google Scholar 

  4. Kusu, N., Laurikkala, J., Imanishi, M., Usui, H., Konishi, M., Miyake, A., Thesleff, I., Itoh, N.: Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J. Biol. Chem. 278, 24113–24117 (2003)

    Article  CAS  Google Scholar 

  5. Li, X.F., Zhang, Y.Z., Kang, H.S., Liu, W.Z., Liu, P., Zhang, J.G., Harris, S.E., Wu, D.Q.: Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005)

    Article  CAS  Google Scholar 

  6. van Bezooijen, R.L., Svensson, J.P., Eefting, D., Visser, A., van der Horst, G., Karperien, M., Quax, P.H., Vrieling, H., Papapoulos, S.E., ten Dijke, P., Lowik, C.W.: Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Bone Miner. Res. 22, 19–28 (2007)

    Article  Google Scholar 

  7. Ominsky, M.S., Vlasseros, F., Jolette, J., Smith, S.Y., Stouch, B., Doellgast, G., Gong, J., Gao, Y., Cao, J., Graham, K., Tipton, B., Cai, J., Deshpande, R., Zhou, L., Hale, M.D., Lightwood, D.J., Henry, A.J., Popplewell, A.G., Moore, A.R., Robinson, M.K., Lacey, D.L., Simonet, W.S., Paszty, C.: Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J. Bone. Miner. Res. 25, 948–959 (2010)

    Article  CAS  Google Scholar 

  8. Florio, M., Gunasekaran, K., Stolina, M., Li, X., Liu, L., Tipton, B., Salimi-Moosavi, H., Asuncion, F.J., Li, C., Sun, B., Tan, H.L., Zhang, L., Han, C.Y., Case, R., Duguay, A.N., Grisanti, M., Stevens, J., Pretorius, J.K., Pacheco, E., Jones, H., Chen, Q., Soriano, B.D., Wen, J., Heron, B., Jacobsen, F.W., Brisan, E., Richards, W.G., Ke, H.Z., Ominsky, M.S.: A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat. Commun. 7, 11505

  9. Saag, K.G., Petersen, J., Brandi, M.L., Karaplis, A.C., Lorentzon, M., Thomas, T., Maddox, J., Fan, M., Meisner, P.D., Grauer, A.: Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377, 1417–1427 (2017)

    Article  CAS  Google Scholar 

  10. Samiei, M., Janjić, K., Cvikl, B., Moritz, A., Agis, H.: The role of sclerostin and dickkopf-1 in oral tissues–A review from the perspective of the dental disciplines. F1000Research. (2019). https://doi.org/10.12688/f1000research.1780

  11. Taut, A.D., Jin, Q., Chung, J.H., Galindo-Moreno, P., Yi, E.S., Sugai, J.V., Ke, H.Z., Liu, M., Giannobile, W.V.: Sclerostin antibody stimulates bone regeneration after experimental periodontitis. J. Bone Miner. Res. 28, 2347–2356 (2013)

    Article  CAS  Google Scholar 

  12. Beresford, J.N., Fedarko, N.S., Fisher, L.W., Midura, R.J., Yanagishita, M., Termine, J.D., Robey, P.G.: Analysis of the proteoglycans synthesized by human bone cells in vitro. J. Biol. Chem. 262, 17164–17172 (1987)

    CAS  PubMed  Google Scholar 

  13. Salbach, J., Rachner, T.D., Rauner, M., Hempel, U., Anderegg, U., Franz, S., Simon, J.C., Hofbauer, L.C.: Regenerative potential of glycosaminoglycans for skin and bone. J. Mol. Med. 90, 625–635 (2012)

    Article  Google Scholar 

  14. Wang, X., Hua, R., Ahsan, A., Ni, Q., Huang, Y., Gu, S., Jiang, J.X.: Age-related deterioration of bone toughness is related to diminishing amount of matrix glycosaminoglycans (GAGs). JBMR Plus. 2, 164–173 (2018)

    Article  CAS  Google Scholar 

  15. Mansouri, R., Jouan, Y., Hay, E., Blin-Wakkach, C., Frain, M., Ostertag, A., Le Henaff, C., Marty, C., Geoffroy, V., Marie, P.J., Cohen-Solal, M., Modrowski, D.: Osteoblastic heparan sulfate glycosaminoglycans control bone remodeling by regulating Wnt signaling and the crosstalk between bone surface and marrow cells. Cell Death Dis. 8, e2902 (2017)

    Article  CAS  Google Scholar 

  16. Kingma, S.D.K., Wagemans, T., Ijlst, L., Bronckers, A.L.J.J., van Kuppevelt, T.H., Everts, V., Wijburg, F.A., van Vlies, N.: Altered interaction and distribution of glycosaminoglycans and growth factors in mucopolysaccharidosis type I bone disease. Bone. 88, 92–100 (2016)

    Article  CAS  Google Scholar 

  17. Picke, A.-K., Salbach-Hirsch, J., Hintze, V., Rother, S., Rauner, M., Kascholke, C., Möller, S., Bernhardt, R., Rammelt, S., Pisabarro, M.T., Ruiz-Gómez, G., Schnabelrauch, M., Schulz-Siegmund, M., Hacker, M.C., Scharnweber, D., Hofbauer, C., Hofbauer, L.C.: Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function. Biomaterials. 96, 11–23 (2016)

    Article  CAS  Google Scholar 

  18. Yates, E.A., Santini, F., Guerrini, M., Naggi, A., Torri, G., Casu, B.: 1 H and 13 C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydr. Res. 294, 15–27 (1996)

    Article  CAS  Google Scholar 

  19. Edens, R.E., Al-Hakim, A., Weiler, J.M., Rethwisch, D.G., Fareed, J., Linhardt, R.J.: Gradient polyacrylamide gel electrophoresis for determination of the molecular weights of heparin preparations and low-molecular-weight heparin derivatives. J. Pharm. Sci. 81, 823–827 (1992)

    Article  CAS  Google Scholar 

  20. Linhardt, R.J., Turnbull, J.E., Wang, H.M., Loganathan, D., Gallagher, J.T.: Examination of the substrate specificity of heparin and heparan sulfate lyases. Biochemistry. 29, 2611–2617 (1990)

    Article  CAS  Google Scholar 

  21. Kim, S.Y., Zhao, J., Liu, X., Fraser, K., Lin, L., Zhang, F., Dordick, J.S., Linhardt, R.J.: Interaction of Zika virus with Glycosaminoglycans. Biochemistry. 56, 1151–1162 (2017)

    Article  CAS  Google Scholar 

  22. Zhao, J., Liu, X., Kao, C., Zhang, E., Li, Q., Zhang, F., Linhardt, R.J.: Kinetic and structural studies of interactions between glycosaminoglycans and langerin. Biochemistry. 55, 4552–4559 (2016)

    Article  CAS  Google Scholar 

  23. Petitou, M., Hérault, J.P., Bernat, A., Driguez, P.A., Duchaussoy, P., Lormeau, J.C., Herbert, J.M.: Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature.398, 417–422 (1999)

    Article  CAS  Google Scholar 

  24. Zhang, F., Moniz, H.A., Walcott, B., Moremen, K.W., Linhardt, R.J., Wang, L.: Characterization of the interaction between Robo1 and heparin and other glycosaminoglycans. Biochimie. 95, 2345–2353 (2013)

    Article  CAS  Google Scholar 

  25. Zhang, F., Lee, K.B., Linhardt, R.J.: SPR biosensor probing the interactions between TIMP-3 and heparin/GAGs. Biosensors. 5, 500–512 (2015)

    Article  CAS  Google Scholar 

  26. Shao, C., Zhang, F., Kemp, M.M., Linhardt, R.J., Waisman, D.M., Head, J.F., Seaton, B.A.: Crystallographic analysis of calcium-dependent heparin binding to annexin A2. J. Biol. Chem. 281, 31689–31695 (2006)

    Article  CAS  Google Scholar 

  27. Lages, B., Stivala, S.S.: Interaction of polyelectrolyte heparin with copper(II) and calcium. Biopolymers. 12, 127–143 (1973)

    Article  CAS  Google Scholar 

  28. Chevalier, F., Lucas, R., Angulo, J., Martin-Lomas, M., Nieto, P.M.: The heparin-Ca(2+) interaction: the influence of the O-sulfation pattern on binding. Carbohydr. Res. 339, 975–983 (2004)

    Article  CAS  Google Scholar 

  29. Parrish, R.F., Fair, W.R.: Selective binding of zinc ions to heparin rather than to other glycosaminoglycans. Biochem. J. 193, 407–410 (1981)

    Article  CAS  Google Scholar 

  30. Zhang, F., Zhang, Z., Lin, X., Beenken, A., Eliseenkova, A.V., Mohammadi, M., Linhardt, R.J.: Compositional analysis of heparin/heparan sulfate interacting with fibroblast growth factor.Fibroblast growth factor receptor complexes. Biochemistry. 48, 8379–8386 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants: DK111958, CA231074 and AG062344 to R.J.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuming Zhang or Robert J. Linhardt.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhao, J., Liu, X. et al. Interactions between Sclerostin and Glycosaminoglycans. Glycoconj J 37, 119–128 (2020). https://doi.org/10.1007/s10719-019-09900-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09900-3

Keywords

Navigation