Skip to main content

Advertisement

Log in

Glycan size and attachment site location affect electron transfer dissociation (ETD) fragmentation and automated glycopeptide identification

  • Short Communication
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We established a small synthetic N-glycopeptide library to systematically evaluate the effect of glycosylation site location and glycan size on the efficiency of electron transfer dissociation (ETD) fragmentation and subsequent automated identification. The glycopeptides within this library differed in glycosylation site position and glycan size ranging from the pentasaccharide N-glycan core to fully sialylated, biantennary N-glycans. Factors such as glycan size, glycosylation site position within a glycopeptide and individual precursor m/z all significantly impacted the number and quality of assignable glycopeptide backbone fragments. Generally, high charge/low m/z precursors (>3+) and glycopeptides carrying neutral, smaller N-glycans gave better product ion spectra, while hardly any product ions were detectable for sialylated, triply charged N-glycopeptides. These factors impacted correct glycopeptide identification by proteomics software tools such as SEQUEST or Amanda. A better understanding how glycopeptide physico-chemical properties influence fragmentation will help optimizing fragmentation conditions and generate better data, which will facilitate software assisted glycopeptide data analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alley Jr., W.R., Mechref, Y., Novotny, M.V.: Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun. Mass Spectrom. 23(1), 161–170 (2009)

    Article  CAS  Google Scholar 

  2. Mechref, Y., Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr Protoc Protein Sci, 2012. Chapter 12: p. Unit 12 11 1–11

  3. Segu, Z.M., Mechref, Y.: Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun. Mass Spectrom. 24(9), 1217–1225 (2010)

    Article  CAS  Google Scholar 

  4. Palmisano, G., Larsen, M.R., Packer, N.H., Thaysen-Andersen, M.: Structural analysis of glycoprotein sialylation -part II: LC-MS based detection. RSC Adv. 3(45), 22706–22726 (2013)

    Article  CAS  Google Scholar 

  5. Zhurov, K.O., Fornelli, L., Wodrich, M.D., Laskay, Ü.A., Tsybin, Y.O.: Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 42(12), 5014–5030 (2013)

    Article  CAS  Google Scholar 

  6. Syrstad, E.A., Turecek, F.: Toward a general mechanism of electron capture dissociation. J. Am. Soc. Mass Spectrom. 16(2), 208–224 (2005)

    Article  CAS  Google Scholar 

  7. Wuhrer, M., Catalina, M.I., Deelder, A.M., Hokke, C.H.: Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 849(1–2), 115–128 (2007)

    Article  CAS  Google Scholar 

  8. Hinneburg, H., Stavenhagen, K., Schweiger-Hufnagel, U., Pengelley, S., Jabs, W., Seeberger, P.H., Silva, D.V., Wuhrer, M., Kolarich, D.: The art of destruction: optimizing collision energies in Quadrupole-Time of Flight (Q-TOF) instruments for glycopeptide-based Glycoproteomics. J. Am. Soc. Mass Spectrom. 27(3), 507–519 (2016)

    Article  CAS  Google Scholar 

  9. Yamamoto, N., Ohmori, Y., Sakakibara, T., Sasaki, K., Juneja, L.R., Kajihara, Y.: Solid-phase synthesis of sialylglycopeptides through selective esterification of the sialic acid residues of an Asn-linked complex-type sialyloligosaccharide. Angew. Chem. Int. Ed. Engl. 42(22), 2537–2540 (2003)

    Article  CAS  Google Scholar 

  10. Alagesan, K., Khilji, S.K., Kolarich, D.: It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal. Bioanal. Chem. 409(2), 529–538 (2017)

    Article  CAS  Google Scholar 

  11. Stavenhagen, K., Hinneburg, H., Thaysen-Andersen, M., Hartmann, L., Silva, D.V., Fuchser, J., Kaspar, S., Rapp, E., Seeberger, P.H., Kolarich, D.: Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J. Mass Spectrom. 48(6), 627–639 (2013)

    Article  CAS  Google Scholar 

  12. Hinneburg, H., Hofmann, J., Struwe, W.B., Thader, A., Altmann, F., Varón Silva, D., Seeberger, P.H., Pagel, K., Kolarich, D.: Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry. Chem. Commun. (Camb.). 52(23), 4381–4384 (2016)

    Article  CAS  Google Scholar 

  13. Piontek, C., Ring, P., Harjes, O., Heinlein, C., Mezzato, S., Lombana, N., Pöhner, C., Püttner, M., Varón Silva, D., Martin, A., Schmid, F.X., Unverzagt, C.: Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: part 1. Angew. Chem. Int. Ed. Engl. 48(11), 1936–1940 (2009)

    Article  CAS  Google Scholar 

  14. Gil, G.C., Velander, W.H., Van Cott, K.E.: N-glycosylation microheterogeneity and site occupancy of an Asn-X-Cys sequon in plasma-derived and recombinant protein C. Proteomics. 9(9), 2555–2567 (2009)

    Article  CAS  Google Scholar 

  15. Kolarich, D., Rapp, E., Struwe, W.B., Haslam, S.M., Zaia, J., McBride, R., Agravat, S., Campbell, M.P., Kato, M., Ranzinger, R., Kettner, C., York, W.S.: The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting mass-spectrometry-based glycoanalytic data. Mol. Cell. Proteomics. 12(4), 991–995 (2013)

    Article  CAS  Google Scholar 

  16. Taylor, C.F., Paton, N.W., Lilley, K.S., Binz, P.A., Julian, R.K., Jones, A.R., Zhu, W., Apweiler, R., Aebersold, R., Deutsch, E.W., Dunn, M.J., Heck, A.J.R., Leitner, A., Macht, M., Mann, M., Martens, L., Neubert, T.A., Patterson, S.D., Ping, P., Seymour, S.L., Souda, P., Tsugita, A., Vandekerckhove, J., Vondriska, T.M., Whitelegge, J.P., Wilkins, M.R., Xenarios, I., Yates, J.R., Hermjakob, H.: The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol. 25(8), 887–893 (2007)

    Article  CAS  Google Scholar 

  17. Liu, J., McLuckey, S.A.: Electron transfer dissociation: effects of cation charge state on product partitioning in ion/ion electron transfer to multiply protonated polypeptides. Int. J. Mass Spectrom. 330-332, 174–181 (2012)

    Article  CAS  Google Scholar 

  18. Lin, C.W., Haeuptle, M.A., Aebi, M.: Supercharging reagent for enhanced liquid chromatographic separation and charging of sialylated and high-molecular-weight glycopeptides for NanoHPLC-ESI-MS/MS analysis. Anal. Chem. 88(17), 8484–8494 (2016)

    Article  CAS  Google Scholar 

  19. Windwarder, M., Yelland, T., Djordjevic, S., Altmann, F.: Detailed characterization of the O-linked glycosylation of the neuropilin-1 c/MAM-domain. Glycoconj. J. 33(3), 387–397 (2016)

    Article  CAS  Google Scholar 

  20. Baker, P.R., Medzihradszky, K.F., Chalkley, R.J.: Improving software performance for peptide electron transfer dissociation data analysis by implementation of charge state- and sequence-dependent scoring. Mol. Cell. Proteomics. 9(9), 1795–1803 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Beilstein-Institut for supporting KA with a PhD scholarship and the Max Planck Society for financial support. DK is the recipient of an Australian Research Council Future Fellowship (project number FT160100344) funded by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kolarich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 383 kb)

ESM 2

(XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagesan, K., Hinneburg, H., Seeberger, P.H. et al. Glycan size and attachment site location affect electron transfer dissociation (ETD) fragmentation and automated glycopeptide identification. Glycoconj J 36, 487–493 (2019). https://doi.org/10.1007/s10719-019-09888-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09888-w

Keywords

Navigation