Skip to main content

Advertisement

Log in

AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

An Erratum to this article was published on 02 August 2016

Abstract

Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AGEs:

advanced glycation endproducts

BM:

basement membrane

BME:

basement membrane extract

EMT:

epithelial to mesenchymal transition

FBS:

fetal bovine serum

MEM:

minimum essential medium

PCO:

posterior capsule opacification

RAGE:

receptor for advanced glycation endproducts

ROS:

reactive oxygen species

αSMA:

alpha smooth muscle actin

CTGF:

connective tissue growth factor

TGFβ2:

transforming growth factor beta2

ZO-1:

zona occuldin-1

References

  1. Sell D.R., Monnier V.M.: Aging of long-lived proteins: extra-cellular matrix (collagens, elastins, proteoglycans) and lens crystallins. In: Masoro E.J. (ed.) Handbook of physiology. Section 11: aging, pp. 235–305. Oxford University Press, New York (1995)

    Google Scholar 

  2. Nagaraj R.H., Linetsky M., Stitt A.W.: The pathogenic role of Maillard reaction in the aging eye. Amino Acids. 42(4), 1205–1220 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed N., Thornalley P.J.: Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab. 9(3), 233–245 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Raghavan C.T., Smuda M., Smith A.J., Howell S., Smith D.G., Singh A., Gupta P., Glomb M.A., Wormstone I.M., Nagaraj R.H.: AGEs in human lens capsule promote the TGFbeta2-mediated EMT of lens epithelial cells: implications for age-associated fibrosis. Aging Cell. 15(3), 465–476 (2016)

  5. Pascolini D., Mariotti S.P.: Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 96(5), 614–618 (2012)

    Article  PubMed  Google Scholar 

  6. Vision 2020: the cataract challenge. Community Eye Health 13(34), 17–19 (2000).

  7. Awasthi N., Guo S., Wagner B.J.: Posterior capsular opacification: a problem reduced but not yet eradicated. Arch. Ophthalmol. 127(4), 555–562 (2009)

    Article  PubMed  Google Scholar 

  8. Wormstone I.M., Wang L., Liu C.S.: Posterior capsule opacification. Exp. Eye Res. 88(2), 257–269 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. Marcantonio J.M., Syam P.P., Liu C.S., Duncan G.: Epithelial transdifferentiation and cataract in the human lens. Exp. Eye Res. 77(3), 339–346 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Billotte C., Berdeaux G.: Adverse clinical consequences of neodymium:YAG laser treatment of posterior capsule opacification. J. Cataract Refract. Surg. 30(10), 2064–2071 (2004)

    Article  PubMed  Google Scholar 

  11. Trinavarat A., Atchaneeyasakul L., Udompunturak S.: Neodymium:YAG laser damage threshold of foldable intraocular lenses. J. Cataract Refract. Surg. 27(5), 775–780 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Jampel H.D., Roche N., Stark W.J., Roberts A.B.: Transforming growth factor-beta in human aqueous humor. Curr. Eye Res. 9(10), 963–969 (1990)

    Article  CAS  PubMed  Google Scholar 

  13. Ohta K., Yamagami S., Taylor A.W., Streilein J.W.: IL-6 antagonizes TGF-beta and abolishes immune privilege in eyes with endotoxin-induced uveitis. Invest. Ophthalmol. Vis. Sci. 41(9), 2591–2599 (2000)

    CAS  PubMed  Google Scholar 

  14. de Iongh R.U., Wederell E., Lovicu F.J., McAvoy J.W.: Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 179(1–2), 43–55 (2005)

    Article  PubMed  Google Scholar 

  15. Li J., Tang X., Chen X.: Comparative effects of TGF-beta2/Smad2 and TGF-beta2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line. Exp. Eye Res. 92(3), 173–179 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Saika S., Kono-Saika S., Ohnishi Y., Sato M., Muragaki Y., Ooshima A., Flanders K.C., Yoo J., Anzano M., Liu C.Y., Kao W.W., Roberts A.B.: Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am. J. Pathol. 164(2), 651–663 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y., Li W., Zang X., Chen N., Liu T., Tsonis P.A., Huang Y.: MicroRNA-204-5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacification by targeting SMAD4. Invest. Ophthalmol. Vis. Sci. 54(1), 323–332 (2013)

    Article  PubMed  Google Scholar 

  18. Wormstone I.M., Tamiya S., Eldred J.A., Lazaridis K., Chantry A., Reddan J.R., Anderson I., Duncan G.: Characterisation of TGF-beta2 signalling and function in a human lens cell line. Exp. Eye Res. 78(3), 705–714 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Chen X., Ye S., Xiao W., Wang W., Luo L., Liu Y.: ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFbeta/Smad and jagged/notch signaling pathways in lens epithelial cells. Int. J. Mol. Med. 33(6), 1664–1670 (2014)

    CAS  PubMed  Google Scholar 

  20. Lovicu F.J., McAvoy J.W., de Iongh R.U.: Understanding the role of growth factors in embryonic development: insights from the lens. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366(1568), 1204–1218 (2011)

    Article  CAS  Google Scholar 

  21. Burns W.C., Twigg S.M., Forbes J.M., Pete J., Tikellis C., Thallas-Bonke V., Thomas M.C., Cooper M.E., Kantharidis P.: Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J. Am. Soc. Nephrol. 17(9), 2484–2494 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Chen L., Wang T., Wang X., Sun B.B., Li J.Q., Liu D.S., Zhang S.F., Liu L., Xu D., Chen Y.J., Wen F.Q.: Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats. Respir. Res. 10, 55 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Neeper M., Schmidt A.M., Brett J., Yan S.D., Wang F., Pan Y.C., Elliston K., Stern D., Shaw A.: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267(21), 14998–15004 (1992)

    CAS  PubMed  Google Scholar 

  24. Hori O., Brett J., Slattery T., Cao R., Zhang J., Chen J.X., Nagashima M., Lundh E.R., Vijay S., Nitecki D., et al.: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270(43), 25752–25761 (1995)

  25. Leclerc E., Fritz G., Vetter S.W., Heizmann C.W.: Binding of S100 proteins to RAGE: an update. Biochim. Biophys. Acta. 1793(6), 993–1007 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. Xie J., Burz D.S., He W., Bronstein I.B., Lednev I., Shekhtman A.: Hexameric calgranulin C (S100 A12) binds to the receptor for advanced glycated end products (RAGE) using symmetric hydrophobic target-binding patches. J. Biol. Chem. 282(6), 4218–4231 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Dattilo B.M., Fritz G., Leclerc E., Kooi C.W., Heizmann C.W., Chazin W.J.: The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry. 46(23), 6957–6970 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ostendorp T., Leclerc E., Galichet A., Koch M., Demling N., Weigle B., Heizmann C.W., Kroneck P.M., Fritz G.: Structural and functional insights into RAGE activation by multimeric S100B. EMBO J. 26(16), 3868–3878 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leclerc E., Fritz G., Weibel M., Heizmann C.W., Galichet A.: S100B and S100 A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J. Biol. Chem. 282(43), 31317–31331 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. Sturchler E., Galichet A., Weibel M., Leclerc E., Heizmann C.W.: Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. J. Neurosci. 28(20), 5149–5158 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. Kislinger T., Fu C., Huber B., Qu W., Taguchi A., Du Yan S., Hofmann M., Yan S.F., Pischetsrieder M., Stern D., Schmidt A.M.: N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J. Biol. Chem. 274(44), 31740–31749 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. Xie J., Reverdatto S., Frolov A., Hoffmann R., Burz D.S., Shekhtman A.: Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J. Biol. Chem. 283(40), 27255–27269 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. Lander H.M., Tauras J.M., Ogiste J.S., Hori O., Moss R.A., Schmidt A.M.: Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 272(28), 17810–17814 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Ramasamy R., Vannucci S.J., Yan S.S., Herold K., Yan S.F., Schmidt A.M.: Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 15(7), 16R–28R (2005)

    Article  CAS  PubMed  Google Scholar 

  35. Lue L.F., Walker D.G., Brachova L., Beach T.G., Rogers J., Schmidt A.M., Stern D.M., Yan S.D.: Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp. Neurol. 171(1), 29–45 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. Sasahira T., Kirita T., Bhawal U.K., Yamamoto K., Ohmori H., Fujii K., Kuniyasu H.: Receptor for advanced glycation end products (RAGE) is important in the prediction of recurrence in human oral squamous cell carcinoma. Histopathology. 51(2), 166–172 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y., Vom Hagen F., Pfister F., Bierhaus A., Feng Y., Gans R., Hammes H.P.: Receptor for advanced glycation end product expression in experimental diabetic retinopathy. Ann. N. Y. Acad. Sci. 1126, 42–45 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. Howes K.A., Liu Y., Dunaief J.L., Milam A., Frederick J.M., Marks A., Baehr W.: Receptor for advanced glycation end products and age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 45(10), 3713–3720 (2004)

    Article  PubMed  Google Scholar 

  39. Wautier M.P., Chappey O., Corda S., Stern D.M., Schmidt A.M., Wautier J.L.: Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 280(5), E685–E694 (2001)

    CAS  PubMed  Google Scholar 

  40. Mizumoto S., Takahashi J., Sugahara K.: Receptor for advanced glycation end products (RAGE) functions as receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells. J. Biol. Chem. 287(23), 18985–18994 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deane R., Singh I., Sagare A.P., Bell R.D., Ross N.T., LaRue B., Love R., Perry S., Paquette N., Deane R.J., Thiyagarajan M., Zarcone T., Fritz G., Friedman A.E., Miller B.L., Zlokovic B.V.: A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Invest. 122(4), 1377–1392 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ganatra D.A., Rajkumar S., Patel A.R., Gajjar D.U., Johar K., Arora A.I., Kayastha F.B., Vasavada A.R.: Association of histone acetylation at the ACTA2 promoter region with epithelial mesenchymal transition of lens epithelial cells. Eye (Lond). 29(6), 828–838 (2015)

    Article  CAS  Google Scholar 

  43. Fehrenbach H., Weiskirchen R., Kasper M., Gressner A.M.: Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts. Hepatology. 34(5), 943–952 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Serban A.I., Stanca L., Geicu O.I., Munteanu M.C., Costache M., Dinischiotu A.: Extracellular matrix is modulated in advanced glycation end products milieu via a RAGE receptor dependent pathway boosted by transforming growth factor-beta1 RAGE. J Diabetes. 7(1), 114–124 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Huang K.P., Chen C., Hao J., Huang J.Y., Liu P.Q., Huang H.Q.: AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-beta1 expression in male rat glomerular mesangial cells. Endocrinology. 156(1), 268–279 (2015)

    Article  PubMed  Google Scholar 

  46. Fang M., Wang J., Li S., Guo Y.: Advanced glycation end-products accelerate the cardiac aging process through the receptor for advanced glycation end-products/transforming growth factor-beta-Smad signaling pathway in cardiac fibroblasts. Geriatr. Gerontol. Int. 16(4), 522–527 (2016)

  47. Yamagishi S., Inagaki Y., Okamoto T., Amano S., Koga K., Takeuchi M.: Advanced glycation end products inhibit de novo protein synthesis and induce TGF-beta overexpression in proximal tubular cells. Kidney Int. 63(2), 464–473 (2003)

  48. Li P., Chen G.R., Wang F., Xu P., Liu L.Y., Yin Y.L., Wang S.X.: Inhibition of NA(+)/H(+) exchanger 1 attenuates renal dysfunction induced by advanced glycation end products in rats. J Diabetes Res. 2016, 1802036 (2016)

    PubMed  Google Scholar 

  49. Cheng M., Liu H., Zhang D., Liu Y., Wang C., Liu F., Chen J.: HMGB1 enhances the AGE-induced expression of CTGF and TGF-beta via RAGE-dependent signaling in renal tubular epithelial cells. Am. J. Nephrol. 41(3), 257–266 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. Yu L., Zhao Y., Xu S., Ding F., Jin C., Fu G., Weng S.: Advanced glycation end product (AGE)-AGE receptor (RAGE) system upregulated Connexin43 expression in rat cardiomyocytes via PKC and Erk MAPK pathways. Int. J. Mol. Sci. 14(2), 2242–2257 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li J.H., Huang X.R., Zhu H.J., Oldfield M., Cooper M., Truong L.D., Johnson R.J., Lan H.Y.: Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J. 18(1), 176–178 (2004)

    CAS  PubMed  Google Scholar 

  52. Yamashita H., ten Dijke P., Franzen P., Miyazono K., Heldin C.H.: Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J. Biol. Chem. 269(31), 20172–20178 (1994)

    CAS  PubMed  Google Scholar 

  53. Brizzi M.F., Dentelli P., Rosso A., Calvi C., Gambino R., Cassader M., Salvidio G., Deferrari G., Camussi G., Pegoraro L., Pagano G., Cavallo-Perin P.: RAGE- and TGF-beta receptor-mediated signals converge on STAT5 and p21waf to control cell-cycle progression of mesangial cells: a possible role in the development and progression of diabetic nephropathy. FASEB J. 18(11), 1249–1251 (2004)

    CAS  PubMed  Google Scholar 

  54. Yamagishi S., Matsui T.: Role of receptor for advanced glycation end products (RAGE) in liver disease. Eur. J. Med. Res. 20, 15 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhao J., Randive R., Stewart J.A.: Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes. 5(6), 860–867 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Russo I., Frangogiannis N.G.: Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 90, 84–93 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. Li J.H., Wang W., Huang X.R., Oldfield M., Schmidt A.M., Cooper M.E., Lan H.Y.: Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am. J. Pathol. 164(4), 1389–1397 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qi W., Niu J., Qin Q., Qiao Z., Gu Y.: Glycated albumin triggers fibrosis and apoptosis via an NADPH oxidase/Nox4-MAPK pathway-dependent mechanism in renal proximal tubular cells. Mol. Cell. Endocrinol. 405, 74–83 (2015)

    Article  CAS  PubMed  Google Scholar 

  59. He W., Zhang J., Gan T.Y., Xu G.J., Tang B.P.: Advanced glycation end products induce endothelial-to-mesenchymal transition via downregulating Sirt 1 and upregulating TGF-beta in human endothelial cells. Biomed. Res. Int. 2015, 684242 (2015)

    PubMed  PubMed Central  Google Scholar 

  60. Ding H., Ji X., Chen R., Ma T., Tang Z., Fen Y., Cai H.: Antifibrotic properties of receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Pulm. Pharmacol. Ther. 35, 34–41 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. Englert J.M., Kliment C.R., Ramsgaard L., Milutinovic P.S., Crum L., Tobolewski J.M., Oury T.D.: Paradoxical function for the receptor for advanced glycation end products in mouse models of pulmonary fibrosis. Int. J. Clin. Exp. Pathol. 4(3), 241–254 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Piperi C., Goumenos A., Adamopoulos C., Papavassiliou A.G.: AGE/RAGE signalling regulation by miRNAs: associations with diabetic complications and therapeutic potential. Int. J. Biochem. Cell Biol. 60, 197–201 (2015)

    Article  CAS  PubMed  Google Scholar 

  63. Lopez-Novoa J.M., Nieto M.A.: Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 1(6–7), 303–314 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheresh P., Kim S.J., Tulasiram S., Kamp D.W.: Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta. 1832(7), 1028–1040 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. Cichon M.A., Radisky D.C.: ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of snail. Oncotarget. 5(9), 2827–2838 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hong Y., Shen C., Yin Q., Sun M., Ma Y., Liu X.: Effects of RAGE-specific inhibitor FPS-ZM1 on amyloid-beta metabolism and AGEs-induced inflammation and oxidative stress in rat hippocampus. Neurochem. Res. 41(5), 1192–1199 (2016)

    Article  CAS  PubMed  Google Scholar 

  67. Dawes L.J., Elliott R.M., Reddan J.R., Wormstone Y.M., Wormstone I.M.: Oligonucleotide microarray analysis of human lens epithelial cells: TGFbeta regulated gene expression. Mol. Vis. 13, 1181–1197 (2007)

    CAS  PubMed  Google Scholar 

  68. Spandidos A., Wang X., Wang H., Seed B.: PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res. 38(Database issue), D792–D799 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Grants EY022061, EY023286 (to RHN). We thank Drs. Rooban Nahomi, Johanna Rankenberg and Stefan Rakete for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram H. Nagaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavan, C.T., Nagaraj, R.H. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells. Glycoconj J 33, 631–643 (2016). https://doi.org/10.1007/s10719-016-9686-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9686-y

Keywords

Navigation