Skip to main content

Advertisement

Log in

Overexpression of α2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycan structure alterations during cancer regulate disease progression and represent clinical biomarkers. The study determined the degree to which changes in glycosyltransferase activities during cancer can be related to aberrant cell-surface tumor associated carbohydrate structures (TACA). To this end, changes in sialyltransferase (sialylT), fucosyltransferase (fucT) and galactosyltransferase (galT) activity were measured in normal and tumor tissue using a miniaturized enzyme activity assay and synthetic glycoconjugates bearing terminal LacNAc Type-I (Galβ1-3GlcNAc), LacNAc Type-II (Galβ1-4GlcNAc), and mucin core-1/Type-III (Galβ1-3GalNAc) structures. These data were related to TACA using tissue microarrays containing 115 breast and 26 colon cancer specimen. The results show that primary human breast and colon tumors, but not adjacent normal tissue, express elevated β1,3GalT and α2,3SialylT activity that can form α2,3SialylatedType-IIIglycans (Siaα2-3Galβ1-3GalNAc). Prostate tumors did not exhibit such elevated enzymatic activities. α1,3/4FucT activity was higher in breast, but not in colon tissue. The enzymology based prediction of enhanced α2,3sialylated Type-III structures in breast tumors was verified using histochemical analysis of tissue sections and tissue microarrays. Here, the binding of two markers that recognize Galβ1-3GalNAc (peanut lectin and mAb A78-G/A7) was elevated in breast tumor, but not in normal control, only upon sialidase treatment. These antigens were also upregulated in colon tumors though to a lesser extent. α2,3sialylatedType-III expression correlated inversely with patient HER2 expression and breast metastatic potential. Overall, enzymology measurements of glycoT activity predict truncated O-glycan structures in tumors. High expression of the α2,3sialylated T-antigen O-glycans occur in breast tumors. A transformation from linear core-1 glycan to other epitopes may accompany metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GlycoT:

Glycosyltransferase

Galβ1-3GalNAc:

Type-III or core-1 type acceptors

Galβ1-4GlcNAc:

Type II or LacNAc type chain

GalT:

Galactosyltransferase

FT or FucT:

Fucosyltransferase

SialylT:

Sialyltransferase

ST3[Galβ1,3GalNAc]:

α2,3 sialyltransferase acting on Galβ1-3GalNAc

ST3/6[Galβ1,4GlcNAc]:

α2,3/6 sialyltransferase acting on Galβ1-4GlcNAc

Bn:

Benzyl

PAA:

Polyacrylamide

Φ-NO2 :

p-nitrophenol

References

  1. Neelamegham, S., Liu, G.: Systems glycobiology: biochemical reaction networks regulating glycan structure and function. Glycobiology 21(12), 1541–1553 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Hakomori, S.: Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 491, 369–402 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Yoshimura, M., Nishikawa, A., Ihara, Y., Taniguchi, S., Taniguchi, N.: Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc. Natl. Acad. Sci. U. S. A. 92(19), 8754–8758 (1995)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Tei, K., Kawakami-Kimura, N., Taguchi, O., Kumamoto, K., Higashiyama, S., Taniguchi, N., Toda, K., Kawata, R., Hisa, Y., Kannagi, R.: Roles of cell adhesion molecules in tumor angiogenesis induced by cotransplantation of cancer and endothelial cells to nude rats. Cancer Res. 62(21), 6289–6296 (2002)

    PubMed  CAS  Google Scholar 

  5. Itzkowitz, S.H., Yuan, M., Montgomery, C.K., Kjeldsen, T., Takahashi, H.K., Bigbee, W.L., Kim, Y.S.: Expression of Tn, Sialosyl-Tn, and T antigens in human colon cancer. Cancer Res. 49(1), 197–204 (1989)

    PubMed  CAS  Google Scholar 

  6. Kozlowski, E.O., Pavao, M.S.: Effect of sulfated glycosaminoglycans on tumor invasion and metastasis. Front. Biosci. 3, 1541–1551 (2011)

    Article  Google Scholar 

  7. Stevenson, J.L., Varki, A., Borsig, L.: Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects. Thromb. Res. 120, Supplement 2(0), S107–S111 (2007)

    Article  Google Scholar 

  8. Potapenko, I.O., Haakensen, V.D., Lüders, T., Helland, Å., Bukholm, I., Sørlie, T., Kristensen, V.N., Lingjærde, O.C., Børresen-Dale, A.-L.: Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol. Oncol. 4(2), 98–118 (2010)

    Article  PubMed  CAS  Google Scholar 

  9. Wander, S.A., Hennessy, B.T., Slingerland, J.M.: Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J. Clin. Invest. 121(4), 1231–1241 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Sebolt-Leopold, J.S., English, J.M.: Mechanisms of drug inhibition of signalling molecules. Nature 441(7092), 457–462 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Chandrasekaran, E.V., Xue, J., Neelamegham, S., Matta, K.L.: The pattern of glycosyl- and sulfotransferase activities in cancer cell lines: a predictor of individual cancer-associated distinct carbohydrate structures for the structural identification of signature glycans. Carbohydr. Res. 341(8), 983–994 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, H., Meng, F., Wu, S., Kreike, B., Sethi, S., Chen, W., Miller, F.R., Wu, G.: Engagement of I-branching β-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-β signaling. Cancer Res. 71(14), 4846–4856 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Barthel, S.R., Wiese, G.K., Cho, J., Opperman, M.J., Hays, D.L., Siddiqui, J., Pienta, K.J., Furie, B., Dimitroff, C.J.: Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking. Proc. Natl. Acad. Sci. U. S. A. 106(46), 19491–19496 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Carvalho, A.S., Harduin-Lepers, A., Magalhães, A., Machado, E., Mendes, N., Costa, L.T., Matthiesen, R., Almeida, R., Costa, J., Reis, C.A.: Differential expression of α-2,3-sialyltransferases and α-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int. J. Biochem. Cell Biol. 42(1), 80–89 (2010)

    Article  PubMed  CAS  Google Scholar 

  15. Recchi, M.-A., Hebbar, M., Hornez, L., Harduin-Lepers, A., Peyrat, J.-P., Delannoy, P.: Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res. 58(18), 4066–4070 (1998)

    PubMed  CAS  Google Scholar 

  16. Gu, Y., Mi, W., Ge, Y., Liu, H., Fan, Q., Han, C., Yang, J., Han, F., Lu, X., Yu, W.: GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res. 70(15), 6344–6351 (2010)

    Article  PubMed  CAS  Google Scholar 

  17. Seko, A., Ohkura, T., Kitamura, H., Yonezawa, S., Sato, E., Yamashita, K.: Quantitative differences in GlcNAc:β1–>3 and GlcNAc:β1–>4 galactosyltransferase activities between human colonic adenocarcinomas and normal colonic mucosa. Cancer Res. 56(15), 3468–3473 (1996)

    PubMed  CAS  Google Scholar 

  18. Chandrasekaran, E., Xue, J., Piskorz, C., Locke, R., Tóth, K., Slocum, H., Matta, K.: Potential tumor markers for human gastric cancer: an elevation of glycan:sulfotransferases and a concomitant loss of α1,2-fucosyltransferase activities. J. Cancer Res. Clin. Oncol. 133(9), 599–611 (2007)

    Article  PubMed  CAS  Google Scholar 

  19. Park, S.-Y., Lee, S.-H., Kawasaki, N., Itoh, S., Kang, K., Hee Ryu, S., Hashii, N., Kim, J.-M., Kim, J.-Y., Hoe Kim, J.: α1-3/4 fucosylation at Asn 241 of β-haptoglobin is a novel marker for colon cancer: a combinatorial approach for development of glycan biomarkers. Int. J. Cancer 130(10), 2366–2376 (2012)

    Article  PubMed  CAS  Google Scholar 

  20. Fry, S.A., Afrough, B., Lomax-Browne, H.J., Timms, J.F., Velentzis, L.S., Leathem, A.J.C.: Lectin microarray profiling of metastatic breast cancers. Glycobiology 21(8), 1060–1070 (2011)

    Article  PubMed  CAS  Google Scholar 

  21. Abd Hamid, U.M., Royle, L., Saldova, R., Radcliffe, C.M., Harvey, D.J., Storr, S.J., Pardo, M., Antrobus, R., Chapman, C.J., Zitzmann, N., Robertson, J.F., Dwek, R.A., Rudd, P.M.: A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 18(12), 1105–1118 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. Pierce, A., Saldova, R., Abd Hamid, U.M., Abrahams, J.L., McDermott, E.W., Evoy, D., Duffy, M.J., Rudd, P.M.: Levels of specific glycans significantly distinguish lymph node-positive from lymph node-negative breast cancer patients. Glycobiology 20(10), 1283–1288 (2010)

    Article  PubMed  CAS  Google Scholar 

  23. Patil, S.A., Chandrasekaran, E.V., Matta, K.L., Parikh, A., Tzanakakis, E.S., Neelamegham, S.: Scaling down the size and increasing the throughput of glycosyltransferase assays: activity changes on stem cell differentiation. Anal. Biochem. 425(2), 135–144 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Marathe, D.D., Chandrasekaran, E.V., Lau, J.T., Matta, K.L., Neelamegham, S.: Systems-level studies of glycosyltransferase gene expression and enzyme activity that are associated with the selectin binding function of human leukocytes. FASEB J. 22(12), 4154–4167 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Chandrasekaran, E.V., Xue, J., Xia, J., Chawda, R., Piskorz, C., Locke, R.D., Neelamegham, S., Matta, K.L.: Analysis of the specificity of sialyltransferases toward mucin core 2, globo, and related structures. identification of the sialylation sequence and the effects of sulfate, fucose, methyl, and fluoro substituents of the carbohydrate chain in the biosynthesis of selectin and siglec ligands, and novel sialylation by cloned alpha2,3(O)sialyltransferase. Biochemistry 44(47), 15619–15635 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Marathe, D.D., Buffone Jr., A., Chandrasekaran, E.V., Xue, J., Locke, R.D., Nasirikenari, M., Lau, J.T., Matta, K.L., Neelamegham, S.: Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins. Blood 115(6), 1303–1312 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Karsten, U., Butschak, G., Cao, Y., Goletz, S., Hanisch, F.G.: A new monoclonal antibody (A78-G/A7) to the Thomsen-Friedenreich pan-tumor antigen. Hybridoma 14(1), 37–44 (1995)

    Article  PubMed  CAS  Google Scholar 

  28. Miles, D.W., Happerfield, L.C., Smith, P., Gillibrand, R., Bobrow, L.G., Gregory, W.M., Rubens, R.D.: Expression of sialyl-Tn predicts the effect of adjuvant chemotherapy in node-positive breast cancer. Br. J. Cancer 70(6), 1272–1275 (1994)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Patani, N., Jiang, W.E.N., Mokbel, K.: Prognostic utility of glycosyltransferase expression in breast cancer. Cancer Genomics Proteomics 5(6), 333–340 (2008)

    PubMed  CAS  Google Scholar 

  30. Sewell, R., Bäckström, M., Dalziel, M., Gschmeissner, S., Karlsson, H., Noll, T., Gätgens, J., Clausen, H., Hansson, G.C., Burchell, J., Taylor-Papadimitriou, J.: The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem. 281(6), 3586–3594 (2006)

    Article  PubMed  CAS  Google Scholar 

  31. Lloyd, K.O., Burchell, J., Kudryashov, V., Yin, B.W.T., Taylor-Papadimitriou, J.: Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. J. Biol. Chem. 271(52), 33325–33334 (1996)

    Article  PubMed  CAS  Google Scholar 

  32. Brockhausen, I., Yang, J.-M., Burchell, J., Whitehouse, C., Taylor-Papadimitriou, J.: Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur. J. Biochem. 233(2), 607–617 (1995)

    Article  PubMed  CAS  Google Scholar 

  33. Storr, S.J., Royle, L., Chapman, C.J., Hamid, U.M.A., Robertson, J.F., Murray, A., Dwek, R.A., Rudd, P.M.: The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient’s serum. Glycobiology 18(6), 456–462 (2008)

    Article  PubMed  CAS  Google Scholar 

  34. Burchell, J., Poulsom, R., Hanby, A., Whitehouse, C., Cooper, L., Clausen, H., Miles, D., Taylor-Papadimitriou, J.: An α2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 9(12), 1307–1311 (1999)

    Article  PubMed  CAS  Google Scholar 

  35. Picco, G., Julien, S., Brockhausen, I., Beatson, R., Antonopoulos, A., Haslam, S., Mandel, U., Dell, A., Pinder, S., Taylor-Papadimitriou, J., Burchell, J.: Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology 20(10), 1241–1250 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Muller, S., Hanisch, F.-G.: Recombinant MUC1 probe authentically reflects cell-specific O-glycosylation profiles of endogenous breast cancer mucin. J. Biol. Chem. 277(29), 26103–26112 (2002)

    Article  PubMed  CAS  Google Scholar 

  37. Engelmann, K., Kinlough, C.L., Muller, S., Razawi, H., Baldus, S.E., Hughey, R.P., Hanisch, F.-G.: Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. Glycobiology 15(11), 1111–1124 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health [grant HL63014(SN), CA121294 (KLM) and HL103411(SN)] and Department of Defense [grant DODPC050420 (KLM)]].

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Neelamegham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.A., Bshara, W., Morrison, C. et al. Overexpression of α2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis. Glycoconj J 31, 509–521 (2014). https://doi.org/10.1007/s10719-014-9548-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9548-4

Keywords

Navigation