Skip to main content

Advertisement

Log in

Enhanced N-glycosylation site exploitation of sialoglycopeptides by peptide IPG-IEF assisted TiO2 chromatography

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Playing an important role in a broad range of biological and pathological processes, sialylation has been drawing wide interest. The efficient sialoglycopeptides enrichment methods are therefore attracting considerable attention. In this paper, we first compared two conventional enrichment methods, lectin and TiO2, and analyzed their characteristics. Furthermore, considering the highly negatively charged nature of sialic acids, we developed a new strategy, peptide immobilized pH gradient isoelectric focusing (IPG-IEF) assisted TiO2 chromatography (PIAT), for the highly efficient enrichment of sialoglycopeptides. In this method, peptides were first separated into 24 fractions using peptide IPG-IEF. Sialoglycopeptides were relatively concentrated in low-pH fractions of the immobilized pH strips and were captured using TiO2 chromatography. As a result, 614 N-glycosylation sites were identified in 582 sialoglycopeptides within 322 sialoglycoproteins from rat liver using PIAT. To our knowledge, this work represents one of the most comprehensive sialoglycoproteomic analyses in general and exhibits the largest database of sialoglycoproteome in rat liver currently. So the new strategy introduced here exhibits high efficiency and universality in the sialoglycopeptide enrichment, and is a powerful tool for sialoglycoproteome exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PIAT:

Peptide IPG-IEF assistant TiO2 chromatography

SAs:

Sialic acids

MW:

Molecular weight

pI:

Isoelectric point

LC:

Liquid chromatography

MS/MS:

Tandem mass spectrometry

PNGase F:

N-glycosidase F

References

  1. Varki, A.: Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. Angata, T., Varki, A.: Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–470 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. Gunnar, B.: The carbohydrate groups of the submaxillary mucin. Z. Physiol. Chem. 240, 43 (1936)

    Article  Google Scholar 

  4. Rempel, H., Calosing, C., Sun, B., Pulliam, L.: Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One 3, e1967 (2008)

    Article  PubMed  Google Scholar 

  5. Haselhorst, T., Fleming, F.E., Dyason, J.C., Hartnell, R.D., Yu, X., Holloway, G., Santegoets, K., Kiefel, M.J., Blanchard, H., Coulson, B.S., Itzstein, M.V.: Sialic acid dependence in rotavirus host cell invasion. Nat. Chem. Biol. 5, 91–93 (2008)

    Article  PubMed  Google Scholar 

  6. Varki, A.: Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841–845 (2006)

    Article  PubMed  CAS  Google Scholar 

  7. Bishop, J., Gagneux, P.: Evolution of carbohydrate antigens — microbial forces shaping host glycomes? Glycobiology 17, 23R–34R (2007)

    Article  PubMed  CAS  Google Scholar 

  8. Varki, A., Angata, T.: Siglecs — the major subfamily of I-type lectins. Glycobiology 16, 1R–27R (2006)

    Article  PubMed  CAS  Google Scholar 

  9. Shinya, K., Ebina, M., Yamada, S., Ono, M., Noriyuki, K., Kawaoka, Y.: Avian flu: Influenza virus receptors in the human airway. Nature 440, 435–436 (2006)

    Article  PubMed  CAS  Google Scholar 

  10. Hidari, K.I., Shimada, S., Suzuki, Y., Suzuki, T.: Binding kinetics of influenza viruses to sialic acid-containing carbohydrates. Glycoconj. J. 24, 583–590 (2007)

    Article  PubMed  CAS  Google Scholar 

  11. Hidari, K.I.P.J., Suzuki, T.: Glycan receptor for influenza virus. The Open Antimicrobial Agents Journal 2, 26–33 (2010)

    Article  CAS  Google Scholar 

  12. Shetty, V., Nickens, Z., Shah, P., Sinnathamby, G., Semmes, O.J., Philip, R.: Investigation of sialylation aberration in N-linked glycopeptides by Lectin and Tandem Labeling (LTL) quantitative proteomics. Anal. Chem. 82, 9201–9210 (2010)

    Article  PubMed  CAS  Google Scholar 

  13. Scanlin, T.F., Glick, M.C.: Terminal glycosylation and disease: influence on cancer and cystic fibrosis. Glycoconj. J. 17, 617–626 (2000)

    Article  PubMed  CAS  Google Scholar 

  14. Gorelik, E., Galili, U., Raz, A.: On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 20, 245–277 (2001)

    Article  PubMed  CAS  Google Scholar 

  15. Varki, N.M., Varki, A.: Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Semin. Thromb. Hemost. 28, 53–66 (2002)

    Article  PubMed  CAS  Google Scholar 

  16. Borsig, L., Wong, R., Hynes, R.O., Varki, N.M., Varki, A.: Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl. Acad. Sci. U. S. A. 99, 2193–2198 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. Laubli, H., Stevenson, J.L., Varki, A., Varki, N.M., Borsig, L.: L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 66, 1536–1542 (2006)

    Article  PubMed  Google Scholar 

  18. Ying-Chih, L., Hsin-Yung, Y., Chien-Yu, C., Chein-Hung, C., Ping-Fu, C., Yi-Hsiu, J., Chung-Hsuan, C., Kay-Hooi, K., Chong-Jen, Y., Pan-Chyr, Y., Tsui-Ling, H., Chi-Huey, W.: Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. PNAS 108, 11332–11337 (2011)

    Article  Google Scholar 

  19. Tajiri, M., Ohyama, C., Wada, Y.: Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in seminal plasma: a glycopeptide approach. Glycobiol. 18, 2–8 (2008)

    Article  CAS  Google Scholar 

  20. Bond, M.R., Kohler, J.J.: Chemical methods for glycoprotein discovery. Curr. Opin. Chem. Biol. 11, 52–58 (2007)

    Article  PubMed  CAS  Google Scholar 

  21. Laughlin, S.T., Baskin, J.M., Amacher, S.L., Bertozzi, C.R.: In vivo imaging of membrane- associated glycans in developing zebrafish. Science 320, 664–667 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. Yang, L., Nyalwidhe, J.O., Guo, S., Drake, R.R., Semmes, O.J.: Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer. Mol. Cell. Proteomics (2011). doi:10.1074/mcp.M110.007294

  23. Nilsson, J., Rüetschi, U., Halim, A., Hesse, C., Carlsohn, E., Brinkmalm, G., Larson, G.: Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods 6, 809–811 (2009)

    Article  PubMed  CAS  Google Scholar 

  24. Zeng, Y., Ramya, T.N., Dirksen, A., Dawson, P.E., Paulson, J.C.: High-efficiency labeling of sialylated glycoproteins on living cells. Nat. Methods 6, 207–209 (2009)

    Article  PubMed  CAS  Google Scholar 

  25. Tian, Y., Esteva, F.J., Song, J., Zhang, H.: Altered expression of sialylated glycoproteins in breast cancer using hydrazide chemistry and mass spectrometry. Mol. Cell. Proteomics (2012). doi:10.1074/mcp.M111.011403

  26. Drake, P.M., Schilling, B., Niles, R.K., Braten, M., Johansen, E., Liu, H., Lerch, M., Sorensen, D.J., Li, B., Allen, S., Hall, S.C., Witkowska, H.E., Regnier, F.E., Gibson, B.W., Fisher, S.J.: A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma. Anal. Biochem. 408, 71–85 (2011)

    Article  PubMed  CAS  Google Scholar 

  27. Zhao, J., Simeone, D.M., Heidt, D., Anderson, M.A., Lubman, D.M.: Comparative serum glycoproteomics using lectin selected sialicacid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J. Proteome Res. 5, 1792–1802 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. Qiu, R., Regnier, F.E.: Comparative glycoproteomics of N-linked complex-type glycoforms containing sialic acid in human serum. Anal. Chem. 77, 7225–7231 (2005)

    Article  PubMed  CAS  Google Scholar 

  29. Wiśniewski, J.R., Zougman, A., Nagaraj, N., Mann, M.: Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009)

    Article  PubMed  Google Scholar 

  30. Zielinska, D.F., Gnad, F., Wiśniewski, J.R., Mann, M.: Precision mapping of an in vivo N-Glycoproteome reveals rigid topological and sequence constraints. Cell 141, 897–907 (2010)

    Article  PubMed  CAS  Google Scholar 

  31. Larsen, M.R., Jensen, S.S., Jakobsen, L.A., Heegaard, N.H.: Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol. Cell. Proteomics 6, 1778–1787 (2007)

    Article  PubMed  CAS  Google Scholar 

  32. Palmisano, G., Lendal, S.E., Larsen, M.R.: Titanium dioxide enrichment of sialic acid-containing glycopeptides. Methods Mol. Biol. 753, 309–322 (2011)

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, B., Sheng, Q., Li, X., Liang, Q., Yan, J., Liang, X.: Selective enrichment of glycopeptides for mass spectrometry analysis using C18 fractionation and titanium dioxide chromatography. J. Sep. Sci. 34, 2745–2750 (2011)

    Article  PubMed  CAS  Google Scholar 

  34. Lewandrowski, U., Zahedi, R.P., Moebius, J., Walter, U., Sickmann, A.: Enhanced N-glycosylation site analysis of sialoglycopeptides by strong cation exchange prefractionation applied to platelet plasma membranes. Mol. Cell. Proteomics 6, 1933–1941 (2007)

    Article  PubMed  CAS  Google Scholar 

  35. Palmisano, G., Lendal, S.E., Engholm-Keller, K., Leth-Larsen, R., Parker, B.L., Larsen, M.R.: Selective enrichment of sialic acid–containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat. Protoc. 5, 1974–1982 (2010)

    Article  PubMed  CAS  Google Scholar 

  36. Hoerth, P., Miller, C.A., Preckel, T., Wenz, C.: Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis. Mol. Cell. Proteomics 5, 1968–1974 (2006)

    Article  CAS  Google Scholar 

  37. Picotti, P., Aebersold, R., Domon, B.: The implications of proteolytic background for shotgun proteomics. Mol. Cell. Proteomics 6, 1589–1598 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. Cox, J., Mann, M.: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008)

    Article  PubMed  CAS  Google Scholar 

  39. Godoy, L.M., Olsen, J.V., Cox, J., Nielsen, M.L., Hubner, N.C., Frohlich, F., Walther, T.C., Mann, M.: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254 (2008)

    Article  PubMed  Google Scholar 

  40. Chick, J.M., Haynes, P.A., Molloy, M.P., Bjellqvist, B., Baker, M.S., Len, A.C.: Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing. J. Proteome Res. 7, 1036–1045 (2008)

    Article  PubMed  CAS  Google Scholar 

  41. Pan, C., Kumar, C., Bohl, S., Klingmueller, U., Mann, M.: Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific. Mol. Cell. Proteomics 8, 443–450 (2009)

    Article  PubMed  CAS  Google Scholar 

  42. Mulvenna, J., Hamilton, B., Nagaraj, S.H., Smyth, D., Loukas, A., Gorman, J.J.: Proteomics analysis of the excretory/secretory component of the blood-feeding stage of the Hookworm, Ancylostoma caninum. Mol. Cell. Proteomics 8, 109–121 (2009)

    Article  PubMed  CAS  Google Scholar 

  43. Lengqvist, J., Eriksson, H., Gry, M., Uhlén, K., Björklund, C., Bjellqvist, B., Jakobsson, P.J., Lehtiö, J.: Observed peptide pI and retention time shifts as a result of post-translational modifications in multidimensional separations using narrow-range IPG-IEF. Amino Acids 40, 697–711 (2011)

    Article  PubMed  CAS  Google Scholar 

  44. Gauci, S., Breukelen, B.V., Lemeer, S.M., Krijgsveld, J., Heck, A.J.: A versatile peptide pI calculator for phosphorylated and N-terminal acetylated peptides experimentally tested using peptide isoelectric focusing. Proteomics 8, 4898–4906 (2008)

    Article  PubMed  CAS  Google Scholar 

  45. Cao, J., Hu, Y., Shen, C.P., Yao, J., Wei, L.M., Yang, F.Y., Nie, A.Y., Wang, H., Shen, H., Liu, Y.K., Zhang, Y., Tang, Y., Yang, P.Y.: Zeolite LTL nanocrystal-driving high efficient enrichment of secretory proteins in human hepatocellular carcinoma cells. Proteomics 9, 4881–4888 (2009)

    Article  PubMed  CAS  Google Scholar 

  46. Cao, J., Shen, C.P., Wang, H., Shen, H.L., Chen, Y.H., Nie, A.Y., Lu, H.J., Liu, Y.K., Yang, P.Y.: Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomics approach. J. Proteome Res. 8, 662–672 (2009)

    Article  PubMed  CAS  Google Scholar 

  47. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007)

    Article  PubMed  CAS  Google Scholar 

  48. Bause, E.: Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem. J. 209, 331–336 (1983)

    PubMed  CAS  Google Scholar 

  49. Cummings, R.D., Kornfeld, S.: Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J. Biol. Chem. 257, 11235–11240 (1982)

    PubMed  CAS  Google Scholar 

  50. Yang, Z., Hancock, W.S.: Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J. Chromatogr. A. 1070, 57–64 (2005)

    Article  PubMed  CAS  Google Scholar 

  51. Uchiyama, N., Kuno, A., Koseki-Kuno, S., Ebe, Y., Horio, K., Yamada, M., Hirabayashi, J.: Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol. 415, 341–351 (2006)

    Article  PubMed  CAS  Google Scholar 

  52. Engholm-Keller, K., Larsen, M.R.: Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds–applications in acidic modification-specific proteomics. J. Proteomics 75, 317–328 (2011)

    Article  PubMed  CAS  Google Scholar 

  53. Palmisano, G., Melo-Braga, M.N., Engholm-Keller, K., Parker, B.L., Larsen, M.R.: Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J. Proteome Res. 11, 1949–1957 (2012)

    Article  PubMed  CAS  Google Scholar 

  54. Zhang, W., Wang, H., Zhang, L., Yao, J., Yang, P.Y.: Large-scale assignment of N-glycosylation sites using complementary enzymatic deglycosylation. Talanta 85, 499–505 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National 973/S973/863 and NSF projects (S973-2011CB910600, NFS-31100590 and 20975024, S973-2010CB912700, 863-2012AA020200), and Shanghai Municipal Natural Science Foundation (11ZR1403000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyuan Yang.

Additional information

Weiqian Cao and Jing Cao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 832  kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Cao, J., Huang, J. et al. Enhanced N-glycosylation site exploitation of sialoglycopeptides by peptide IPG-IEF assisted TiO2 chromatography. Glycoconj J 29, 433–443 (2012). https://doi.org/10.1007/s10719-012-9404-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9404-3

Keywords

Navigation