Skip to main content
Log in

Carbohydrate to carbohydrate interaction in development process and cancer progression

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

An Erratum to this article was published on 28 June 2012

Abstract

Two types of carbohydrate to carbohydrate interaction (CCI) have been known to be involved in biological processes. One is the CCI between molecules expressed on interfacing cell membranes of different cells to mediate cell to cell adhesion, and subsequently induce cell signaling, and is termed trans-CCI. It has been indicated that the Lex to Lex interaction at the morula stage in mouse embryos plays an important role in the compaction process in embryonic development. GM3 to Gg3 or GM3 to LacCer interaction has been suggested to be involved in adhesion of tumor cells to endothelial cells, which is considered a crucial step in tumor metastasis. The other is the CCI between molecules expressed within the same microdomain of the cell surface membrane, and is termed cis-CCI. The interaction between ganglioside GM3, and multi (>3) GlcNAc termini of N-linked glycans of epidermal growth factor receptor (EGFR), has been indicated as the molecular mechanism for the inhibitory effect of GM3 on EGFR activation. Also, the complex with GM3 and GM2 has been shown to inhibit the activation of hepatocyte growth factor (HGF) receptor, cMet, through its association with tetraspanin CD82, and results in the inhibition of cell motility. Since CCI research is still limited, more examples of CCI in biological processes in development, and cancer progression will be revealed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CCI:

carbohydrate-to-carbohydrate interaction

Cer:

ceramide

CD82:

one of tetraspanin superfamily (TM4), interacting membrane components to control cellular phenotype

CHO:

Chinese hamster ovary

CPI:

carbohydrate-to-protein interaction

Ecad:

E-cadherin

EDTA:

ethylenediaminetetraacetic acid

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

ES:

embryonal stem

Fuc:

fucose

GFR:

growth factor receptor

GalCer:

β-galactosylceramide

GalNAc:

N-acetylgalactosamine

GSL:

glycosphingolipid

HGF:

human growth factor

HGFR:

hepatocyte growth factor receptor

HPLC:

high-performance liquid chromatography

IgG:

immunoglobulin G

LacCer:

lactosylceramide

LacNAc:

Galβ4GlcNAc

M:

mannose

mAb:

monoclonal antibodies

NeuAc:

N-acetylneuraminic acid

NMR:

nuclear magnetic resonance

Os:

oligosaccharide

PPI:

protein-to-protein interaction

RTK:

receptor tyrosine kinase

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

SSEA:

stage-specific embryogenic antigen

TBS:

tris-buffered saline (tris, tris(hydroxymethyl)aminomethane)

GSLs:

are abbreviated as recommended by the IUPAC-IUB Commission on Biochemical Nomenclature (Biochem J 171: 21–35, 1978, Table I); however, the suffix -Ose or -OseCer is omitted. Ganglio-series gangliosides are abbreviated according to the extended version of Svennerholm’s list (e.g., Holmgren et al., Proc Natl Acad Sci USA 77: 1947–1950, 1980).

Gb3:

Galα4Galβ4Glcβ1Cer

Gb4:

GalNAcβ3Galα4Galβ4Glcβ1Cer

Gb5:

Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer

Gg3:

GalNAcβ4Galβ4Glcβ1Cer

Gg4:

Galβ3GalNAcβ4Galβ4Glcβ1Cer

GD1a:

[NeuAcα3]Galβ3GalNAcβ4[NeuAcα3]Galβ4Glcβ1Cer

GD1b:

Galβ3GalNAcβ4[NeuAcα8NeuAcα3]Galβ4Glcβ1Cer

GD2:

NeuAcα2-8NeuAcα2-3[GalNAcβ1-4]Galβ1-4Glc1Cer

GD3:

NeuAcα2-8NeuAcα2-3Galβ4Glc1Cer

GT1a:

NeuAcα8NeuAcα3Galβ3GalNAcβ4[NeuAcα3]Galβ4Glcβ1Cer

GT1b:

NeuAcα3Galβ3GalNAcβ4[NeuAcα8NeuAcα3]Galβ4Glcβ1Cer

GM1:

Galβ3GalNAcβ4[NeuAcα3]Galβ4Glcβ1Cer

GM2:

GalNAcβ4[NeuAcα3]Galβ4Glcβ1Cer

GM3:

NeuAcα3Galβ4Glcβ1Cer

LacCer:

Galβ4Glcβ1Cer

nLc4:

Galβ4GlcNAcβ3Galβ4GlcβCer

Lea:

Galβ3[Fucα4]GlcNAcβ3Galβ→R

Lex:

Galβ4[Fucα3]GlcNAcβ3Galβ→R

Ley:

[Fucα2]Galβ3[Fucα4]GlcNAcβ3Galβ→R

NGcGM3:

N-glycolylneuraminyl-lactosylCer

NAcGM3:

N-acetylneuraminyl-lactosylCer

PG:

paragloboside: Galβ4GlcNAcβ3Galβ1-4Glcβ1-Cer

SSEA-3:

Fucα2Galβ3NAcβ3Galα4Galβ4Glcβ1Cer

SSEA-4:

NeuAcα3Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer

H antigen:

Fucα1-2Galβ-R

References

  1. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., Marth, J.: Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1999)

    Google Scholar 

  2. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2), 97–130 (1993)

    Article  PubMed  CAS  Google Scholar 

  3. Humphreys, T.: Chemical dissolution and in vitro reconstruction of sponge cell adhesions: I. Isolation and functional demonstration of the components involved. Dev Biol 8, 27–47 (1963)

    Article  CAS  Google Scholar 

  4. Spillmann, D., Thomas-Oates, J.E., van Kuik, J.A., Vliegenthart, J.F.G., Misevic, G., Burger, M.M., Finne, J.: Characterization of a novel sulfated carbohydrate unit implicated in the carbohydrate-carbohydrate-mediated cell aggregation of the marine sponge Microciona prolifera. J Biol Chem 270(10), 5089–5097 (1995)

    Article  PubMed  CAS  Google Scholar 

  5. Carvalho de Souza, A., Halkes, K.M., Meeldijk, J.D., Verkleij, A.J., Vliegenthart, J.F., Kamerling, J.P.: Gold glyconanoparticles as probes to explore the carbohydrate-mediated self-recognition of marine sponge cells. Chembiochem 6(5), 828–831 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. Rojo, J., Diaz, V., de la Fuente, J.M., Segura, I., Barrientos, A.G., Riese, H.H., Bernad, A., Penades, S.: Gold glyconanoparticles as new tools in antiadhesive therapy. Chembiochem 5(3), 291–297 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. Dammer, U., Popescu, O., Wagner, P., Anselmetti, D., Guntherodt, H.-J., Misevic, G.N.: Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267, 1173–1175 (1995)

    Article  PubMed  CAS  Google Scholar 

  8. Solter, D., Knowles, B.B.: Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 75(11), 5565–5569 (1978)

    Article  PubMed  CAS  Google Scholar 

  9. Hakomori, S., Nudelman, E.D., Levery, S.B., Solter, D., Knowles, B.B.: The hapten structure of a developmentally regulated glycolipid antigen (SSEA-1) isolated from human erythrocytes and adenocarcinoma: a preliminary note. Biochem Biophys Res Commun 100, 1578–1586 (1981)

    Article  PubMed  CAS  Google Scholar 

  10. Kannagi, R., Nudelman, E.D., Levery, S.B., Hakomori, S.: A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1. J Biol Chem 257, 14865–14874 (1982)

    PubMed  CAS  Google Scholar 

  11. Gooi, H.C., Feizi, T., Kapadia, A., Knowles, B.B., Solter, D., Evans, M.J.: Stage-specific embryonic antigen involves a1-3 fucosylated type 2 blood group chains. Nature 292, 156–158 (1981)

    Article  PubMed  CAS  Google Scholar 

  12. Kannagi, R., Cochran, N.A., Ishigami, F., Hakomori, S., Andrews, P.W., Knowles, B.B., Solter, D.: Stage-specific embryonic antigens (SSEA-3 and −4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2(12), 2355–2361 (1983)

    PubMed  CAS  Google Scholar 

  13. Kannagi, R., Levery, S.B., Ishigami, F., Hakomori, S., Shevinsky, L.H., Knowles, B.B., Solter, D.: New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J Biol Chem 258(14), 8934–8942 (1983)

    PubMed  CAS  Google Scholar 

  14. Shevinsky, L.H., Knowles, B.B., Damjanov, I., Solter, D.: Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on embryos and human teratocarcinoma cells. Cell 30(3), 697–705 (1982)

    Article  PubMed  CAS  Google Scholar 

  15. Handyside, A.H.: Distribution of antibody- and lectin-binding sites on dissociated blastomeres from mouse morulae: evidence for polarization at compaction. J Embryol Exp Morphol 60, 99–116 (1980)

    PubMed  CAS  Google Scholar 

  16. Fenderson, B.A., Zehavi, U., Hakomori, S.: A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J Exp Med 160(5), 1591–1596 (1984)

    Article  PubMed  CAS  Google Scholar 

  17. Eggens, I., Fenderson, B.A., Toyokuni, T., Dean, B., Stroud, M.R., Hakomori, S.: Specific interaction between Lex and Lex determinants: a possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem 264(16), 9476–9484 (1989)

    PubMed  CAS  Google Scholar 

  18. de la Fuente, J.M., Barrientos, A.G., Rojas, T.C., Rojo, J., Canada, J., Fernandez, A., Penades, S.: Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angew Chem Intl Ed 40(12), 2259–2261 (2001)

    Google Scholar 

  19. Rosenman, S.J., Fenderson, B.A., Hakomori, S.: The role of glycoconjugates in embryogenesis. In: Ohyama, M., Muramatsu, T. (eds.) Glycoconjugates in medicine, pp. 43–50. Professional postgraduate services, Japan (1988)

    Google Scholar 

  20. Kojima, N., Fenderson, B.A., Stroud, M.R., Goldberg, R.I., Habermann, R., Toyokuni, T., Hakomori, S.: Further studies on cell adhesion based on Lex-Lex interaction, with new approaches: Embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Lex expression. Glycoconj J 11(3), 238–248 (1994)

    Article  PubMed  CAS  Google Scholar 

  21. Muramatsu, T., Gachelin, G., Damonneville, M., Delarbre, C., Jacob, F.: Cell surface carbohydrates of embryonal carcinoma cells: polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA. Cell 18, 183–191 (1979)

    Article  PubMed  CAS  Google Scholar 

  22. Muramatsu, T., Gachelin, G., Moscona, A.A., Ikawa, Y.: Teratocarcinoma and embryonic cell interactions, p. 344. Japan Scientific Societies Press/Academic Press, Tokyo (1982)

    Google Scholar 

  23. Handa, K., Takatani-Nakase, T., Larue, L., Stemmler, M.P., Kemler, R., Hakomori, S.: Lex glycan mediates homotypic adhesion of embryonal cells independently from E-cadherin: a preliminary note. Biochem Biophys Res Commun 358(1), 247–252 (2007)

    Article  PubMed  CAS  Google Scholar 

  24. Kojima, N., Hakomori, S.: Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction. J Biol Chem 266, 17552–17558 (1991)

    PubMed  CAS  Google Scholar 

  25. Otsuji, E., Park, Y.S., Tashiro, K., Kojima, N., Toyokuni, T., Hakomori, S.: Inhibition of B16 melanoma metastasis by administration of GM3- or Gg3-liposomes: blocking adhesion of melanoma cells to endothelial cells (anti-adhesion therapy) via inhibition of GM3-Gg3Cer or GM3-LacCer interaction. Int J Oncol 6, 319–327 (1995)

    PubMed  CAS  Google Scholar 

  26. Santacroce, P.V., Basu, A.: Probing specificity in carbohydrate-carbohydrate interactions with micelles and Langmuir monolayers. Angew Chem Intl Ed 42(1), 95–98 (2003)

    Article  CAS  Google Scholar 

  27. Boggs, J.M., Menikh, A., Rangaraj, G.: Trans interactions between galactosylceramide and cerebroside sulfate across apposed bilayers. Biophys J 78(2), 874–885 (2000)

    Article  PubMed  CAS  Google Scholar 

  28. Boggs, J.M., Gao, W., Hirahara, Y.: Myelin glycosphingolipids, galactosylceramide and sulfatide, participate in carbohydrate-carbohydrate interactions between apposed membranes and may form glycosynapses between oligodendrocyte and/or myelin membranes. Biochim Biophys Acta 1780(3), 445–455 (2008)

    Article  PubMed  CAS  Google Scholar 

  29. Zhu, Z., Cheng, L., Tsui, Z., Hakomori, S., Fenderson, B.A.: Glycosphingolipids of rabbit endometrium and their changes during pregnancy. J Reprod Fertil 95(3), 813–823 (1992)

    Article  PubMed  CAS  Google Scholar 

  30. Zhu, Z., Kojima, N., Stroud, M.R., Hakomori, S., Fenderson, B.A.: Monoclonal antibody directed to Ley oligosaccharide inhibits implantation in the mouse. Biol Repro 52, 903–912 (1995)

    Article  CAS  Google Scholar 

  31. Geyer, A., Gege, C., Schmidt, R.R.: Calcium-dependent carbohydrate-carbohydrate recognition between Lewis(X) blood group antigens. Angew Chem Intl Ed 39(18), 3245–3249 (2000)

    Article  Google Scholar 

  32. Tromas, C., Rojo, J., de la Fuente, J.M., Barrientos, A.G., Garcia, R., Penades, S.: Adhesion forces between Lewisx determinant antigens as measured by atomic force microscopy. Angew Chem Intl Ed 40(16), 3052–3055 (2001)

    Article  CAS  Google Scholar 

  33. Evans, E.A.: Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophys J 48(1), 185–192 (1985)

    Article  PubMed  CAS  Google Scholar 

  34. Gourier, C., Pincet, F., Perez, E., Zhang, Y., Zhu, Z., Mallet, J.M., Sinay, P.: The natural LewisX-bearing lipids promote membrane adhesion: influence of ceramide on carbohydrate-carbohydrate recognition. Angew Chem Intl Ed 44(11), 1683–1687 (2005)

    Article  CAS  Google Scholar 

  35. Yu, S., Withers, D.A., Hakomori, S.: Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREB. J. Biol. Chem. 273, 2517–2525 (1998)

    Article  Google Scholar 

  36. Bremer, E.G., Schlessinger, J., Hakomori, S.: Ganglioside-mediated modulation of cell growth: specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261(5), 2434–2440 (1986)

    PubMed  CAS  Google Scholar 

  37. Weis, F.M.B., Davis, R.J.: Regulation of epidermal growth factor receptor signal transduction: role of gangliosides. J Biol Chem 265, 12059–12066 (1990)

    PubMed  CAS  Google Scholar 

  38. Miljan, E.A., Meuillet, E.J., Mania-Farnell, B., George, D., Yamamoto, H., Simon, H.G., Bremer, E.G.: Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J Biol Chem 277(12), 10108–10113 (2002)

    Article  PubMed  CAS  Google Scholar 

  39. Zhen, Y., Caprioli, R.M., Staros, J.V.: Characterization of glycosylation sites of the epidermal growth factor receptor. Biochemistry 42(18), 5478–5492 (2003)

    Article  PubMed  CAS  Google Scholar 

  40. Shimizu, Y., Nakata, M., Kuroda, Y., Tsutsumi, F., Kojima, N., Mizuochi, T.: Rapid and simple preparation of N-linked oligosaccharides by cellulose-column chromatography. Carbohydr Res 332, 381–388 (2001)

    Article  PubMed  CAS  Google Scholar 

  41. Merkle, R.K., Cummings, R.D.: Lectin affinity chromatography of glycopeptides. Meth. Enzymol. 138, 232–259 (1987)

    Article  PubMed  CAS  Google Scholar 

  42. Ohyama, Y., Kasai, K., Nomoto, H., Inoue, Y.: Frontal affinity chromatography of ovalbumin glycoasparagines on a concanavalin A-sepharose column. A quantitative study of the binding specificity of the lectin. J Biol Chem 260(11), 6882–6887 (1985)

    PubMed  CAS  Google Scholar 

  43. Feizi, T., Stoll, M.S., Yuen, C.-T., Chai, W., Lawson, A.M.: Neoglycolipids: probes of oligosaccharide structure, antigenicity, and function. Meth. Enzymol. 230, 484–519 (1994)

    Article  PubMed  CAS  Google Scholar 

  44. Stoll, M.S., Feizi, T.: Preparation of neoglycolipids for structure and function assignments of oligosaccharides. BioMethods 9, 329–348 (1997)

    CAS  Google Scholar 

  45. Yamashita, K., Kamerling, J.P., Kobata, A.: Structural study of the carbohydrate moiety of hen ovomucoid: occurrence of a series of pentaantennary complex-type asparagine-linked sugar chains. J Biol Chem 257(21), 12809–12814 (1982)

    PubMed  CAS  Google Scholar 

  46. Yoon, S., Nakayama, K., Takahashi, N., Yagi, H., Utkina, N., Wang, H.Y., Kato, K., Sadilek, M., Hakomori, S.: Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside. Glycoconj J 23(9), 639–649 (2006)

    Article  PubMed  CAS  Google Scholar 

  47. Lyer, P.N., Wilkinson, K.D., Goldstein, L.J.: An -N-acetyl-D-glycosamine binding lectin from Bandeiraea simplicifolia seeds. Arch Biochem Biophys 177(1), 330–333 (1976)

    Article  PubMed  CAS  Google Scholar 

  48. Symington, F.W., Fenderson, B.A., Hakomori, S.: Fine specificity of a monoclonal anti-testicular cell antibody for glycolipids with terminal N-acetyl-D-glucosamine structure. Molec Immun 21, 877–882 (1984)

    Article  PubMed  CAS  Google Scholar 

  49. Yoon, S., Nakayama, K., Hikita, T., Handa, K., Hakomori, S.: Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 103(50), 18987–18991 (2006)

    Article  PubMed  CAS  Google Scholar 

  50. Kawashima, N., Yoon, S.J., Itoh, K., Nakayama, K.: Tyrosine kinase activity of epidermal growth factor receptor is regulated by GM3 binding through carbohydrate to carbohydrate interactions. J Biol Chem 284(10), 6147–6155 (2009)

    Article  PubMed  CAS  Google Scholar 

  51. Guan, F., Handa, K., Hakomori, S.I.: Regulation of epidermal growth factor receptor through interaction of ganglioside GM3 with GlcNAc of N-linked glycan of the receptor: demonstration in ldlD cells. Neurochem Res 36(9), 1645–1653 (2011)

    Article  PubMed  CAS  Google Scholar 

  52. Todeschini, A.R., Dos Santos, J.N., Handa, K., Hakomori, S.: Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc Natl Acad Sci USA 105(6), 1925–1930 (2008)

    Article  PubMed  CAS  Google Scholar 

  53. Kaida, K., Morita, D., Kanzaki, M., Kamakura, K., Motoyoshi, K., Hirakawa, M., Kusunoki, S.: Ganglioside complexes as new target antigens in Guillain-Barre syndrome. Ann Neurol 56(4), 567–571 (2004)

    Article  PubMed  CAS  Google Scholar 

  54. Kusunoki, S., Kaida, K., Ueda, M.: Antibodies against gangliosides and ganglioside complexes in Guillain-Barre syndrome: new aspects of research. Biochim Biophys Acta 1780(3), 441–444 (2008)

    Article  PubMed  CAS  Google Scholar 

  55. Kojima, N., Shiota, M., Sadahira, Y., Handa, K., Hakomori, S.: Cell adhesion in a dynamic flow system as compared to static system: glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells. J Biol Chem 267, 17264–17270 (1992)

    PubMed  CAS  Google Scholar 

  56. Sharma, S.V., Bell, D.W., Settleman, J., Haber, D.A.: Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3), 169–181 (2007)

    Article  PubMed  CAS  Google Scholar 

  57. Irmer, D., Funk, J.O., Blaukat, A.: EGFR kinase domain mutations—functional impact and relevance for lung cancer therapy. Oncogene 26(39), 5693–5701 (2007)

    Article  PubMed  CAS  Google Scholar 

  58. Balak, M.N., Gong, Y., Riely, G.J., Somwar, R., Li, A.R., Zakowski, M.F., Chiang, A., Yang, G., Ouerfelli, O., Kris, M.G., Ladanyi, M., Miller, V.A., Pao, W.: Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12(21), 6494–6501 (2006)

    Article  PubMed  CAS  Google Scholar 

  59. Bean, J., Riely, G.J., Balak, M., Marks, J.L., Ladanyi, M., Miller, V.A., Pao, W.: Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res 14(22), 7519–7525 (2008)

    Article  PubMed  CAS  Google Scholar 

  60. Sugawa, N., Ekstrand, A.J., James, C.D., Collins, V.P.: Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA 87(21), 8602–8606 (1990)

    Article  PubMed  CAS  Google Scholar 

  61. Ekstrand, A.J., Sugawa, N., James, C.D., Collins, V.P.: Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 89(10), 4309–4313 (1992)

    Article  PubMed  CAS  Google Scholar 

  62. Hakomori, S., Young, W.W.J., Patt, L.M., Yoshino, T., Halfpap, L., Lingwood, C.A.: Cell biological and immunological significance of ganglioside changes associated with transformation. In: Svennerholm, L., Dreyfus, H., Urban, P.F. (eds.) Structure and function of gangliosides, pp. 247–261. Plenum, New York (1980)

    Google Scholar 

  63. Haseley, S.R., Vermeer, H.J., Kamerling, J.P., Vliegenthart, J.F.G.: Carbohydrate self-recognition mediates marine sponge cellular adhesion. Proc Natl Acad Sci USA 98(16), 9419–9424 (2001)

    Article  PubMed  CAS  Google Scholar 

  64. Matsuura, K., Kitakouji, H., Sawada, N., Ishida, H., Kiso, M., Kitajima, K., Kobayashi, K.: A quantitative estimation of carbohydrate-carbohydrate interaction using clustered oligosaccharides of glycolipid monolayers and of artificial glycoconjugate polymers by surface plasmon resonance. J Am Chem Soc 122(30), 7406–7407 (2000)

    Article  CAS  Google Scholar 

  65. de la Fuente, J.M., Penades, S.: Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology. Glycoconj J 21(3–4), 149–163 (2004)

    Article  PubMed  Google Scholar 

  66. Song, H., Ming, G., He, Z., Lehmann, M., McKerracher, L., Tessier-Lavigne, M., Poo, M.: Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281(5382), 1515–1518 (1998)

    Article  PubMed  CAS  Google Scholar 

  67. Kojima, N., Hakomori, S.: Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells. J Biol Chem 264, 20159–20162 (1989)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our original studies were supported by the National Institute of Health, research no.: 2 R01 CA080054, National Cancer Institute Outstanding Investigator Grant, CA42505 (to S.H.) and the Biomembrane Institute. We thank Dr. Wai Cheu Lai and Marlin Lobaton for the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen-itiroh Hakomori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handa, K., Hakomori, Si. Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 29, 627–637 (2012). https://doi.org/10.1007/s10719-012-9380-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9380-7

Keywords

Navigation