Skip to main content

Advertisement

Log in

Polar lipid remodeling and increased sulfatide expression are associated with the glioma therapeutic candidates, wild type p53 elevation and the topoisomerase-1 inhibitor, Irinotecan

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We report changes in gene and polar lipid expression induced by adenovirus-delivered wild-type (wt) p53 gene and chemotherapy of U87 MG glioblastoma cells, a treatment known to trigger apoptosis and cell cycle arrest. Sulfatides (sulfonated glycolipids) were most highly modulated by wild-type p53 treatment; however, no changes were observed in expression levels of mRNA for genes involved in sulfatide metabolism, indicating post-transcriptional control of sulfatide synthesis. Modulation of the aglycones of GD1 and GM1b was observed in wild-type p53-treated cells. The treatment also leads to an increase in phospholipids such as phosphatidyl inositols, phosphatidyl serines, phosphatidyl glycerols, and phosphatidyl ethanolamines, especially hydroxylated phospholipids. These dramatic changes in the composition of cellular glycolipids in response to p53 gene expression and cytotoxic chemotherapy treatment indicate the large role that they play in cell signaling. The use of the human glioma cell line U87 appears to be an excellent model system both in tissue culture and in intracranial murine xenograft models to further characterize the role of sulfatides in modulating glioma responsivity to therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lang, F.F., Shono, T., Gilbert, M.R.: Ad-p53 sensitizes wild-type p53 gliomas to the topoisomerase I inhibitor SN-38. Neuro Oncol 4, 323–324 (2002)

    Article  Google Scholar 

  2. Puchades, M., Nilsson, C.L., Emmett, M.R., Aldape, K.D., Ji, Y., Lang, F.F., Liu, T.J., Conrad, C.A.: Proteomic investigation of glioblastoma cell lines treated with wild-type p53 and cytotoxic chemotherapy demonstrates an association between galectin-1 and p53 expression. J Proteome Res 6, 869–875 (2007)

    Article  PubMed  CAS  Google Scholar 

  3. Elad-Sfadia, G., Haklai, R., Ballan, E., Gabius, H.J., Kloog, Y.: Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J Biol Chem 277, 37169–37175 (2002)

    Article  PubMed  CAS  Google Scholar 

  4. Rotblat, B., Niv, H., Andre, S., Kaltner, H., Gabius, H.J., Kloog, Y.: Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res 64, 3112–3118 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. Camby, I., Belot, N., Lefranc, F., Sadeghi, N., de Launoit, Y., Kaltner, H., Musette, S., Darro, F., Danguy, A., Salmon, I., Gabius, H.J., Kiss, R.: Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J Neuropathol Exp Neurol 61, 585–596 (2002)

    PubMed  CAS  Google Scholar 

  6. Kopitz, J., von Reitzenstein, C., Burchert, M., Cantz, M., Gabius, H.J.: Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273, 11205–11211 (1998)

    Article  PubMed  CAS  Google Scholar 

  7. Dbaibo, G.S., Pushkareva, M.Y., Rachid, R.A., Alter, N., Smyth, M.J., Obeid, L.M., Hannun, Y.A.: p53-dependent ceramide response to genotoxic stress. J Clin Invest 102, 329–339 (1998)

    Article  PubMed  CAS  Google Scholar 

  8. Bektas, M., Spiegel, S.: Glycosphingolipids and cell death. Glycoconj J 20, 39–47 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. Bieberich, E.: Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 21, 315–327 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. d’Azzo, A., Tessitore, A., Sano, R.: Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 13, 404–414 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Hawkins, P.T., Anderson, K.E., Davidson, K., Stephens, L.R.: Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34, 647–662 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. Segui, B., Andrieu-Abadie, N., Jaffrezou, J.P., Benoist, H., Levade, T.: Sphingolipids as modulators of cancer cell death: potential therapeutic targets. Biochim Biophys Acta 1758, 2104–2120 (2006)

    Article  PubMed  CAS  Google Scholar 

  13. Hakomori, S., Handa, K.: Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS Lett 531, 88–92 (2002)

    Article  PubMed  CAS  Google Scholar 

  14. Ono, M., Hakomori, S.: Glycosylation defining cancer cell motility and invasiveness. Glycoconj J 20, 71–78 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. Dawson, G., Moskal, J.R., Dawson, S.A.: Transfection of 2, 6 and 2, 3-sialyltransferase genes and GlcNAc-transferase genes into human glioma cell line U-373 MG affects glycoconjugate expression and enhances cell death. J Neurochem 89, 1436–1444 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. Furukawa, K., Hamamura, K., Aixinjueluo, W., Furukawa, K.: Biosignals modulated by tumor-associated carbohydrate antigens: novel targets for cancer therapy. Ann N Y Acad Sci 1086, 185–198 (2006)

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto, H., Oviedo, A., Sweeley, C., Saito, T., Moskal, J.R.: Alpha 2,6-sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res 61, 6822–6829 (2001)

    PubMed  CAS  Google Scholar 

  18. Yamamoto, H., Swoger, J., Greene, S., Saito, T., Hurh, J., Sweeley, C., Leestma, J., Mkrdichian, E., Cerullo, L., Nishikawa, A., Ihara, Y., Taniguchi, N., Moskal, J.R.: Beta 1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Cancer Res 60, 134–142 (2000)

    PubMed  CAS  Google Scholar 

  19. Forrester, J.S., Milne, S.B., Ivanova, P.T., Brown, H.A.: Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol Pharmacol 65, 813–821 (2004)

    Article  PubMed  CAS  Google Scholar 

  20. Majerus, P.W., Connolly, T.M., Bansal, V.S., Inhorn, R.C., Ross, T.S., Lips, D.L.: Inositol phosphates: synthesis and degradation. J Biol Chem 263, 3051–3054 (1988)

    PubMed  CAS  Google Scholar 

  21. He, H., Conrad, C.A., Nilsson, C.L., Ji, Y., Schaub, T.M., Marshall, A.G., Emmett, M.R.: Method for lipidomic analysis: p53 expression modulation of sulfatide, ganglioside, and phospholipid composition of U87 MG glioblastoma cells. Anal Chem 79, 8423–8430 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. Bielawski, J., Szulc, Z.M., Hannun, Y.A., Bielawska, A.: Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39, 82–91 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. Kim, H.Y., Wang, T.C., Ma, Y.C.: Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal Chem 66, 3977–3982 (1994)

    Article  PubMed  CAS  Google Scholar 

  24. Schwudke, D., Hannich, J.T., Surendranath, V., Grimard, V., Moehring, T., Burton, L., Kurzchalia, T., Shevchenko, A.: Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. Anal Chem 79, 4083–4093 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. Hoffman, R.C., Jennings, L.L., Tsigelny, I., Comoletti, D., Flynn, R.E., Sudhof, T.C., Taylor, P.: Structural characterization of recombinant soluble rat neuroligin 1: mapping of secondary structure and glycosylation by mass spectrometry. Biochemistry 43, 1496–1506 (2004)

    Article  PubMed  CAS  Google Scholar 

  26. Kroes, R.A., Dawson, G., Moskal, J.R.: Focused microarray analysis of glyco-gene expression in human glioblastomas. J Neurochem 103(Suppl 1), 14–24 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. Lee, P.D., Sladek, R., Greenwood, C.M., Hudson, T.J.: Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 12, 292–297 (2002)

    Article  PubMed  CAS  Google Scholar 

  28. Schaub, T.M., Hendrickson, C.L., Horning, S., Quinn, J.P., Senko, M.W., Marshall, A.G.: High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. Anal Chem 80, 3985–3990 (2008)

    Article  PubMed  CAS  Google Scholar 

  29. Churchill, G.A.: Fundamentals of experimental design for cDNA microarrays. Nat Genet 32(Suppl), 490–495 (2002)

    Article  PubMed  CAS  Google Scholar 

  30. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG resource for deciphering the genome. Nucleic Acids Res 32, D277–280 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. James, C.G., Ulici, V., Tuckermann, J., Underhill, T.M., Beier, F.: Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genomics 8, 205 (2007)

    Article  PubMed  CAS  Google Scholar 

  32. Li, Z., Srivastava, S., Yang, X., Mittal, S., Norton, P., Resau, J., Haab, B., Chan, C.: A hierarchical approach employing metabolic and gene expression profiles to identify the pathways that confer cytotoxicity in HepG2 cells. BMC Syst Biol 1, 21 (2007)

    Article  PubMed  CAS  Google Scholar 

  33. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545–15550 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. Vivanco, I., Palaskas, N., Tran, C., Finn, S.P., Getz, G., Kennedy, N.J., Jiao, J., Rose, J., Xie, W., Loda, M., Golub, T., Mellinghoff, I.K., Davis, R.J., Wu, H., Sawyers, C.L.: Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11, 555–569 (2007)

    Article  PubMed  CAS  Google Scholar 

  35. Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17, 1–35 (1998)

    Article  PubMed  CAS  Google Scholar 

  36. Senko, M.W., Hendrickson, C.L., Emmett, M.R., Shi, S.D., Marshall, A.G.: External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 8, 970–976 (1997)

    Article  CAS  Google Scholar 

  37. Delacour, D., Gouyer, V., Zanetta, J.P., Drobecq, H., Leteurtre, E., Grard, G., Moreau-Hannedouche, O., Maes, E., Pons, A., Andre, S., Le Bivic, A., Gabius, H.J., Manninen, A., Simons, K., Huet, G.: Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J Cell Biol 169, 491–501 (2005)

    Article  PubMed  CAS  Google Scholar 

  38. Di Paolo, G., De Camilli, P.: Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006)

    Article  PubMed  CAS  Google Scholar 

  39. Chang, G.H., Barbaro, N.M., Pieper, R.O.: Phosphatidylserine-dependent phagocytosis of apoptotic glioma cells by normal human microglia, astrocytes, and glioma cells. Neuro Oncol 2, 174–183 (2000)

    Article  PubMed  CAS  Google Scholar 

  40. Hansen, G.H., Immerdal, L., Thorsen, E., Niels-Christiansen, L.L., Nystrom, B.T., Demant, E.J., Danielsen, E.M.: Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes. J Biol Chem 276, 32338–32344 (2001)

    Article  PubMed  CAS  Google Scholar 

  41. Li, N., Shaw, A.R., Zhang, N., Mak, A., Li, L.: Lipid raft proteomics: analysis of in-solution digest of sodium dodecyl sulfate-solubilized lipid raft proteins by liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry. Proteomics 4, 3156–3166 (2004)

    Article  PubMed  CAS  Google Scholar 

  42. Chung, C.D., Patel, V.P., Moran, M., Lewis, L.A., Miceli, M.C.: Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 165, 3722–3729 (2000)

    PubMed  CAS  Google Scholar 

  43. Fortin, S., Le Mercier, M., Camby, I., Spiegl-Kreinecker, S., Berger, W., Lefranc, F., and Kiss, R.: Galectin-1 is implicated in the protein kinase C epsilon/vimentin-controlled trafficking of integrin-beta1 in glioblastoma cells. Brain Pathol (2008)

  44. Vos, J.P., Lopes-Cardozo, M., Gadella, B.M.: Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta 1211, 125–149 (1994)

    PubMed  CAS  Google Scholar 

  45. He, J., Baum, L.G.: Presentation of galectin-1 by extracellular matrix triggers T cell death. J Biol Chem 279, 4705–4712 (2004)

    Article  PubMed  CAS  Google Scholar 

  46. Pernber, Z., Richter, K., Mansson, J.E., Nygren, H.: Sulfatide with different fatty acids has unique distributions in cerebellum as imaged by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Biochim Biophys Acta 1771, 202–209 (2007)

    PubMed  CAS  Google Scholar 

  47. Zeng, Y., Cheng, H., Jiang, X., Han, X.: Endosomes and lysosomes play distinct roles in sulfatide-induced neuroblastoma apoptosis: potential mechanisms contributing to abnormal sulfatide metabolism in related neuronal diseases. Biochem J 410, 81–92 (2008)

    Article  PubMed  CAS  Google Scholar 

  48. Kannagi, R., Nudelman, E., Hakomori, S.: Possible role of ceramide in defining structure and function of membrane glycolipids. Proc Natl Acad Sci U S A 79, 3470–3474 (1982)

    Article  PubMed  CAS  Google Scholar 

  49. Lingwood, C.A.: Aglycone modulation of glycolipid receptor function. Glycoconj J 13, 495–503 (1996)

    Article  PubMed  CAS  Google Scholar 

  50. Ladisch, S., Sweeley, C.C., Becker, H., Gage, D.: Aberrant fatty acyl alpha-hydroxylation in human neuroblastoma tumor gangliosides. J Biol Chem 264, 12097–12105 (1989)

    PubMed  CAS  Google Scholar 

  51. Nyholm, P.G., Pascher, I.: Orientation of the saccharide chains of glycolipids at the membrane surface: conformational analysis of the glucose-ceramide and the glucose-glyceride linkages using molecular mechanics (MM3). Biochemistry 32, 1225–1234 (1993)

    Article  PubMed  CAS  Google Scholar 

  52. Nyholm, P.G., Pascher, I.: Steric presentation and recognition of the saccharide chains of glycolipids at the cell surface: favoured conformations of the saccharide-lipid linkage calculated using molecular mechanics (MM3). Int J Biol Macromol 15, 43–51 (1993)

    Article  PubMed  CAS  Google Scholar 

  53. Stewart, R.J., Boggs, J.M.: Dependence of the surface expression of the glycolipid cerebroside sulfate on its lipid environment: comparison of sphingomyelin and phosphatidylcholine. Biochemistry 29, 3644–3653 (1990)

    Article  PubMed  CAS  Google Scholar 

  54. Stewart, R.J., Boggs, J.M.: A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: dependence on the glycolipid ceramide composition. Biochemistry 32, 10666–10674 (1993)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry ICR Facility at the National High Magnetic Field Laboratory (NSF DMR 06-54118) and The John C. Merchant Foundation; Live Well, Love Life, Laugh Hard Foundation and the Falk Foundation are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Moskal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Ion relative abundances for polar lipids from U87 MG cells. (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Nilsson, C.L., Emmett, M.R. et al. Polar lipid remodeling and increased sulfatide expression are associated with the glioma therapeutic candidates, wild type p53 elevation and the topoisomerase-1 inhibitor, Irinotecan. Glycoconj J 27, 27–38 (2010). https://doi.org/10.1007/s10719-009-9249-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9249-6

Keywords

Navigation