Skip to main content
Log in

High level of sialate-O-acetyltransferase activity in lymphoblasts of childhood acute lymphoblastic leukaemia (ALL): enzyme characterization and correlation with disease status

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Previous studies had established an over-expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). Here, we report the discovery and characterization of sialate-O-acetyltransferase enzyme in ALL-cell lines and lymphoblasts from bone marrow of children diagnosed with B- and T-ALL. We observed a positive correlation between the enhanced sialate-O-acetyltransferase activity and the enhanced expression of Neu5,9Ac2-GPs in these lymphoblasts. Sialate-O-acetyltransferase activity in cell lysates or microsomal fractions of lymphoblasts of patients was always higher than that in healthy donors reaching up to 22-fold in microsomes. Additionally, the V max of this enzymatic reaction with AcCoA was over threefold higher in microsomal fractions of lymphoblasts. The enzyme bound to the microsomal fractions showed high activity with CMP-N-acetylneuraminic acid, ganglioside GD3 and endogenous sialic acid as substrates. N-acetyl-7-O-acetylneuraminic acid was the main reaction product, as detected by radio-thin-layer chromatography and fluorimetrically coupled radio-high-performance liquid chromatography. CMP and coenzyme A inhibited the microsomal enzyme. Sialate-O-acetyltransferase activity increased at the diagnosis of leukaemia, decreased with clinical remission and sharply increased again in relapsed patients as determined by radiometric-assay. A newly-developed non-radioactive ELISA can quickly detect sialate-O-acetyltransferase, and thus, may become a suitable tool for ALL-monitoring in larger scale. This is the first report on sialate-O-acetyltransferase in ALL being one of the few descriptions of an enzyme of this type in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid

AcCoA:

acetyl-coenzyme A

ALL:

acute lymphoblastic leukaemia

AML:

acute myelogenous leukaemia

BM:

bone marrow

BSA:

bovine serum albumin

BSM:

bovine submandibular gland mucin

CML:

chronic myeloid leukaemia

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

CMP-Neu5Ac:

cytidinmonophosphate N-acetylneuraminic acid

CoA:

coenzyme A

cyt-μ:

cytoplasmic μ

Cy5:

cyanin 5

de-O-AcBSM:

de-O-acetylated BSM

DAB:

3,3′-diamino benzidine

DMB:

1,2-diamino-4,5-methylene-dioxybenzene

ELISA:

enzyme linked immunosorbent assay

FACS:

fluorescence-activated cell sorter

FCS:

fetal calf serum

FITC:

fluorescein isothiocyanate

GD3:

ganglioside GD3

HPLC:

high-performance liquid chromatography

HRP:

horse radish peroxidase

IgG:

immunoglobulin G

Mab:

monoclonal antibodies

GalNAc:

N-acetylgalactosamine

Neu5,7Ac2 :

N-acetyl-7-O-acetylneuraminic acid

Neu5,8Ac2 :

N-acetyl-8-O-acetylneuraminic acid

Neu5,9Ac2 :

N-acetyl-9-O-acetylneuraminic acid

Neu5,9Ac2-GPs:

O-acetylated sialoglycoproteins

PCA:

perchloric acid

PBMC:

peripheral blood mononuclear cells

PE:

phycoerythrin

Sia:

sialic acids

SOAT:

sialate-O-acetyltransferase

SD:

standard deviation

SIg:

surface membrane Ig

TdT:

terminal deoxynucleotidyl transferase

TLC:

thin-layer chromatography

TBS:

Tris-buffered saline

References

  1. Pui, C.H., Robison, L.L., Look, A.T.: Acute lymphoblastic leukaemia. Lancet. 371, 1030–1043 (2008). doi:10.1016/S0140-6736(08)60457-2

    Article  PubMed  CAS  Google Scholar 

  2. Schauer, R.: Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499 (2000) doi:10.1023/A:1011062223612 and references therein

    Article  PubMed  CAS  Google Scholar 

  3. Klein, A., Roussel, P.: O-Acetylation of sialic acids. Biochimie. 80, 49–57 (1998). doi:10.1016/S0300-9084(98)80056-4

    Article  CAS  Google Scholar 

  4. Angata, T., Varki, A.: Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002). doi:10.1021/cr000407m

    Article  PubMed  CAS  Google Scholar 

  5. Schauer, R.: Sialic acids: fascinating sugars in higher animals and man. Zoology. 107, 49–64 (2004). doi:10.1016/j.zool.2003.10.002

    Article  PubMed  CAS  Google Scholar 

  6. Mukherjee, K., Chowdhury, S., Mondal, S., Mandal, C., Chandra, S., Bhadra, R.K., et al.: 9-O-acetylated GD3 triggers programmed cell death in mature erythrocytes. Biochem. Biophys. Res. Commun. 362, 651–657 (2007). doi:10.1016/j.bbrc.2007.08.048

    Article  PubMed  CAS  Google Scholar 

  7. Malisan, F., Franchi, L., Tomassini, B., Ventura, N., Condo, I., Rippo, M.R., Testi, R., et al.: Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J. Exp. Med. 196, 1535–1541 (2002). doi:10.1084/jem.20020960

    Article  PubMed  CAS  Google Scholar 

  8. Erdmann, M., Wipfler, D., Merling, A., Cao, Y., Claus, C., Kniep, B., et al.: Differential surface expression and possible function of 9-O- and 7-O-acetylated GD3 (CD60 b and c) during activation and apoptosis of human tonsillar B and T lymphocytes. Glycoconj. J. 23, 627–638 (2006). doi:10.1007/s10719-006-9000-5

    Article  PubMed  CAS  Google Scholar 

  9. Shen, Y., Tiralongo, J., Kohla, G., Schauer, R.: Regulation of sialic acid O-acetylation in human colon mucosa. Biol. Chem. 385, 145–152 (2004). doi:10.1515/BC.2004.033

    Article  PubMed  CAS  Google Scholar 

  10. Tiralongo, J., Schauer, R.: The enigma of enzymatic sialic acid O-acetylation. Trends Glycosci. Glycotechnol. 16, 1–15 (2004)

    CAS  Google Scholar 

  11. Lrhorfi, L.A., Srinivasan, G.V., Schauer, R.: Properties and partial purification of sialate-O-acetyltransferase from bovine submandibular glands. Biol. Chem. 388, 297–306 (2007). doi:10.1515/BC.2007.033

    Article  PubMed  CAS  Google Scholar 

  12. Shi, W.X., Chammas, R., Varki, A.: Linkage-specific action of endogenous sialic acid O-acetyltransferase in Chinese hamster ovary cells. J. Biol. Chem. 271, 15130–15138 (1996). doi:10.1074/jbc.271.25.15130

    Article  PubMed  CAS  Google Scholar 

  13. Chen, H.Y., Challa, A.K., Varki, A.: 9-O-Acetylation of exogenously added ganglioside GD3: the GD3 molecule induces its own O-acetylation machinery. J. Biol. Chem. 281, 7825–7833 (2006). doi:10.1074/jbc.M512379200

    Article  PubMed  CAS  Google Scholar 

  14. Vandamme-Feldhaus, V., Schauer, R.: Characterization of the enzymatic 7-O-acetylation of sialic acids and evidence for enzymatic O-acetyl migration from C-7 to C-9 in bovine submandibular gland. J. Biochem. 124, 111–121 (1998)

    PubMed  CAS  Google Scholar 

  15. Butor, C., Diaz, S., Varki, A.: High-level O-acetylation of sialic acids on N-linked oligosaccharides of rat liver membranes. Differential subcellular distribution of 7- and 9-O-acetyl groups and of enzymes involved in their regulation. J. Biol. Chem. 268, 10197–10206 (1993) and references therein

    PubMed  CAS  Google Scholar 

  16. Iwersen, M., Vandamme-Feldhaus, V., Schauer, R.: Enzymatic 4-O-acetylation of N-acetylneuraminic acid in guinea-pig liver. Glycoconj. J. 15, 895–904 (1998). doi:10.1023/A:1006911100081

    Article  PubMed  CAS  Google Scholar 

  17. Corfield, A.P., Myerscough, N., Warren, B.F., Durdey, P., Paraskeva, C., Schauer, R.: Reduction of sialic acid O-acetylation in human colonic mucins in the adenoma–carcinoma sequence. Glycoconj. J. 16, 307–317 (1999). doi:10.1023/A:1007026314792

    Article  PubMed  CAS  Google Scholar 

  18. Shen, Y., Kohla, G., Lrhorfi, A.L., Sipos, B., Kalthoff, H., Gerwing, G.J., et al.: O-Acetylation and de-O-acetylation of sialic acids in human colorectal carcinoma. Eur. J. Biochem. 271, 281–290 (2004). doi:10.1046/j.1432-1033.2003.03927.x

    Article  PubMed  CAS  Google Scholar 

  19. Ritter, G., Boosfeld, E., Markstein, E., Yu, R.K., Ren, S.L., Stallcup, W.B., et al.: Biochemical and serological characteristics of natural 9-O-acetyl GD3 from human melanoma and bovine buttermilk and chemically O-acetylated GD3. Cancer Res. 50, 1403–1410 (1990)

    PubMed  CAS  Google Scholar 

  20. Ravindranaths, M.H., Paulson, J.C., Irie, R.F.: Human melanoma antigen O-acetylated ganglioside GD3 is recognized by Cancer antennarius lectin. J. Biol. Chem. 263, 2079–2086 (1988)

    PubMed  CAS  Google Scholar 

  21. Fahr, C., Schauer, R.: Detection of sialic acids and gangliosides with special reference to 9-O-acetylated species in basaliomas and normal human skin. J. Invest. Dermatol. 116, 254–260 (2001). doi:10.1046/j.1523-1747.2001.01237.x

    Article  PubMed  CAS  Google Scholar 

  22. Marquina, G., Waki, H., Fernandez, L.E., Kon, K., Carr, A., Valiente, O., et al.: Gangliosides expressed in human breast cancer. Cancer Res. 56, 5165–5171 (1996)

    PubMed  CAS  Google Scholar 

  23. Sen, G., Mandal, C.: A unique specificity of the binding site of Achatinin-H, a sialic acid binding lectin from Achatina fulica. Carbohydr. Res. 268, 115–125 (1995). doi:10.1016/0008-6215(94)00311-3

    Article  PubMed  CAS  Google Scholar 

  24. Mandal, C., Chatterjee, M., Sinha, D.: Investigation of 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 110, 801–812 (2000). doi:10.1046/j.1365-2141.2000.02105.x

    Article  CAS  Google Scholar 

  25. Sinha, D., Mandal, C., Bhattacharya, D.K.: Identification of 9-O-acetylated sialoglycoconjugates (9-OAcSGs) as biomarkers in childhood acute lymphoblastic leukemia using a lectin, AchatininH, as a probe. Leukemia. 13, 119–125 (1999). doi:10.1038/sj.leu.2401312

    Article  PubMed  CAS  Google Scholar 

  26. Pal, S., Ghosh, S., Bandhyopadhyay, S., Mandal, C., Bandhyopadhyay, S., Bhattacharya, D.K., et al.: Differential expression of 9-O-acetylated sialoglycoconjugates on leukemic blasts: a potential tool for long-term monitoring of children with acute lymphoblastic leukaemia. Int. J. Cancer. 111, 270–277 (2004). doi:10.1002/ijc.20246

    Article  PubMed  CAS  Google Scholar 

  27. Pal, S., Ghosh, S., Mandal, C., Kohla, G., Brossmer, R., Isecke, R., et al.: Purification and characterization of 9-O-acetylated sialoglycoproteins from leukemic cells and their potential as immunological tool for monitoring childhood acute lymphoblastic leukaemia. Glycobiology. 14, 859–870 (2004). doi:10.1093/glycob/cwh111

    Article  PubMed  CAS  Google Scholar 

  28. Ghosh, S., Bandhyopadhyay, S., Pal, S., Das, B., Bhattacharya, D.K., Mandal, C.: Increased interferon gamma production by peripheral blood mononuclear cells in response to stimulation of overexpressed disease-specific 9-O-acetylated sialoglycoconjugates in children suffering from acute lymphoblastic leukaemia. Br. J. Haematol. 128, 35–41 (2005). doi:10.1111/j.1365-2141.2004.05256.x

    Article  PubMed  CAS  Google Scholar 

  29. Ghosh, S., Bandyopadhyay, S., Mukherjee, K., Mallick, A., Pal, S., Mandal, C., Bhattacharya, D.K., Mandal, C.: O-Acetylation of sialic acids is required for the survival of lymphoblasts in childhood acute lymphoblastic leukemia (ALL). Glycoconj. J. 24, 17–24 (2007). doi:10.1007/s10719-006-9007-y

    Article  PubMed  CAS  Google Scholar 

  30. Sinha, D., Mandal, C., Bhattacharya, D.K.: A novel method for prognostic evaluation of childhood acute lymphoblastic leukaemia. Leukaemia. 13, 309–312 (1999). doi:10.1038/sj.leu.2401312

    Article  CAS  Google Scholar 

  31. Bandhyopadhyay, S., Bhattacharyya, A., Mallick, A., Sen, A.K., Tripathi, G., Das, T., Mandal, C., et al.: Over-expressed IgG2 antibodies against O-acetylated sialoglycoconjugates incapable of proper effector functioning in childhood acute lymphoblastic leukaemia. Int. Immunol. 17, 177–191 (2005). doi:10.1093/intimm/dxh198

    Article  Google Scholar 

  32. Debray, H., Decout, D., Strecker, G., Spik, G., Montreuil, J.: Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur. J. Biochem. 117, 41–55 (1981)

    PubMed  CAS  Google Scholar 

  33. Schultze, H.E., Schmidtberger, R., Haupt, H.: Studies on bound carbohydrates in isolated plasma proteins. Biochem. Z. 329, 90–507 (1958)

    Google Scholar 

  34. Baenziger, J.U., Fiete, D.: Structure of the complex oligosaccharides of fetuin. J. Biol. Chem. 254, 789–795 (1979)

    PubMed  CAS  Google Scholar 

  35. Murphy, W.H., Gottschalk, A.: Studies on mucoproteins, VII. The linkage of the prosthetic group to aspartic and glutamic acid residues in bovine submaxillary gland mucoprotein. Biochim. Biophys. Acta 52, 349–360 (1961). doi:10.1016/0006-3002(61)90684-9

    Article  PubMed  CAS  Google Scholar 

  36. Bertolini, M., Pigman, W.: The existence of oligosaccharides in bovine and ovine submaxillary mucins. Carbohydr. Res. 14, 53–63 (1970). doi:10.1016/S0008-6215(00)80699-0

    Article  CAS  Google Scholar 

  37. Shukla, A.K., Schauer, R.: Fluorimetric determination of unsubstituted and 9(8)-O-acetylated sialic acids in erythrocyte membranes. Hoppe-Seylers Z. Physiol. Chem. 363, 255–262 (1982)

    PubMed  CAS  Google Scholar 

  38. Leelavathi, D.E., Easter, L.W., Feingold, D.C., Lombardi, B.: : Isolation of a Golgi-rich fraction from rat liver. Biochim. Biophys. Acta 211, 124–138 (1970). doi:10.1016/0005-2736(70)90087-8

    Article  CAS  Google Scholar 

  39. Carey, D.J., Hirschberg, C.B.: Topography of sialoglycoprotein and sialyltransferases in mouse and rat liver Golgi. J. Biol. Chem. 256, 989–993 (1981)

    PubMed  CAS  Google Scholar 

  40. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  CAS  Google Scholar 

  41. Reuter, G., Schauer, R.: Determination of sialic acids. Methods Enzymol. 230, 168–199 (1984). doi:10.1016/0076-6879(94)30012-7

    Article  Google Scholar 

  42. Hara, S., Yamaguchi, M., Takemori, Y., Furuhata, K., Ogura, H., Nakamura, M.: Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography. Anal. Biochem. 179, 162–166 (1989). doi:10.1016/0003-2697(89)90218-2

    Article  PubMed  CAS  Google Scholar 

  43. Varki, A., Diaz, S.: The transport and utilization of acetyl coenzyme A by rat liver Golgi vesicles. O-Acetylated sialic acids are a major product. J. Biol. Chem. 260, 6600–6608 (1985)

    PubMed  CAS  Google Scholar 

  44. Rosenberg, A., Schengrund, C.L. (eds.): Biological roles of sialic acid. Plenum, New York, 1976, pp. 22.

Download references

Acknowledgement

Mr. Chandan Mandal and Ms. Suchandra Chowdhury are recipients of Senior Research Fellowships of the University Grant Commission, Government of India. This work received financial support from the Department of Science and Technology, Department of Biotechnology, Indian Council of Medical Research, Council of Scientific and Industrial Research, New Delhi, India. Our sincere thanks go to Prof. Bruno Venerando (Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Italy) for providing the ALLPO cell line and to Dr. Bernhard Kniep (Institute of Immunology, Technical University of Dresden, Germany) for ganglioside standards. We are thankful to Prof. Tamás Laskay (Institute for Medical Microbiology and Hygiene, University of Lübeck, Germany) for providing laboratory facility to culture the T-ALL cell line. Mr. Arup Sarkar, Dr Anil.K. Chava and Mr. Asish Mallick are also acknowledged for their help. The Sialic Acids Society, Kiel, Germany, also supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitra Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, C., Srinivasan, G.V., Chowdhury, S. et al. High level of sialate-O-acetyltransferase activity in lymphoblasts of childhood acute lymphoblastic leukaemia (ALL): enzyme characterization and correlation with disease status. Glycoconj J 26, 57–73 (2009). https://doi.org/10.1007/s10719-008-9163-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9163-3

Keywords

Navigation