Skip to main content

Advertisement

Log in

Antiproliferative effect of T/Tn specific Artocarpus lakoocha agglutinin (ALA) on human leukemic cells (Jurkat, U937, K562) and their imaging by QD-ALA nanoconjugate

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

T/Tn specificity of Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha (Moraceae) fruit and a heterodimer (16 kD and 12 kD) of molecular mass 28 kD, was further confirmed by SPR analysis using T/Tn glycan containing mammalian glycoproteins. N-terminal amino acid sequence analysis of ALA showed homology at 15, 19–21, 24–27, and 29 residues with other lectin members of Moraceae family viz., Artocarpus integrifolia (jacalin) lectin, Artocarpus hirsuta lectin, and Maclura pomifera agglutinin. It is mitogenic to human PBMC and the maximum proliferation was observed at 1 ng/ml. It showed an antiproliferative effect on leukemic cells, with the highest effect toward Jurkat cells (IC50 13.15 ng/ml). Synthesized CdS quantum dot-ALA nanoconjugate was employed to detect the expression of T/Tn glycans on Jurkat, U937, and K562 leukemic cells surfaces as well as normal lymphocytes by fluorescence microscopy. No green fluorescence was observed with normal lymphocytes indicating that T/Tn determinants, which are recognized as human tumor associated structures were cryptic on normal lymphocyte surfaces, whereas intense green fluorescent dots appeared during imaging of leukemic cells, where such determinants were present in unmasked form. The above results indicated that QD-ALA nanoconjugate is an efficient fluorescent marker for identification of leukemic cell lines that gives rise to high quality images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALA:

Artocarpus lakoocha agglutinin

BSM:

Bovine submandibular gland mucin

CdS:

Cadmium sulphide

ELLSA:

Enzyme - linked lectinsorbent assay

ESI-MS:

Electron spray ionization mass spectrometry

FPLC:

Fast protein liquid chromatography

HBS:

Hepes buffered saline

HEPES:

N-(2-hydoxyethyl) piperizine-N′-(2-hydroxypropane sulfonic acid)

HSM:

Hamster submaxillary mucin

PBMC:

Peripheral blood mononuclear cells

PVDF:

Polyvinylidene difluoride

Q-ToF:

Quadrupole-time of flight

QD:

Quantum dot

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

2 ME:

2-Mercaptoethanol

References

  1. Dixon, H.B.F.: Defining a lectin. Nature 292, 192 (1981)

    Article  Google Scholar 

  2. Sharon, N., Lis, H.: Lectins as cell recognition molecules. Science 246, 227–234 (1989)

    Article  PubMed  CAS  Google Scholar 

  3. Hakomori, S.: Glycosylation defining cancer malignancy: New wine in an old bottle. Proc. Natl. Acad. Sci. USA. 99, 10231–10233 (2002)

    Article  PubMed  CAS  Google Scholar 

  4. Kim, Y.J., Varki, A.: Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J. 14, 569–576 (1997)

    Article  PubMed  CAS  Google Scholar 

  5. Strauchen, J.A.: Lectin receptor as markers of lymphoid cells. II Reed-Sternberg cells share lectin-binding properties of monocyte macrophages. Am. J. Pathol. 116, 370–376 (1984)

    PubMed  CAS  Google Scholar 

  6. Cook, D.B., Bustamam, A.A., Brotherick, I., Shenton, B.K., Self, C.H.: Lectin ELISA for the c-erb-B2 tumor marker protein p185 in patients with breast cancer and controls. Clin. Chem. 45, 292–295 (1999)

    PubMed  CAS  Google Scholar 

  7. Kamoto, T., Satomura, S., Yoshiki, T., Okada, Y., Henmi, F., Nishiyama, H., Kobayashi, T., Terai, A., Habuchi, T., Ogawa, O.: Lectin-reactive α-fetoprotein (AFP-L3%) curability and prediction of clinical course after treatment of non-seminomatous germ cell tumors. Jpn. J. Clin. Oncol. 32, 472–476 (2002)

    Article  PubMed  Google Scholar 

  8. Comunale, M.A., Lowman, M., Long, R.E., Krakover, J., Philip, R., Seeholzer, S., Evans, A.A., Hann, H.W.L., Block, T.M., Mehta, A.S.: Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J. Proteom. Res. 5, 308–315 (2006)

    Article  CAS  Google Scholar 

  9. Lingerfelt, B.M., Mattoussi, H., Goldman, E.R., Mauro, J.M., Anderson, G.P.: Preparation of quantum dot-biotin conjugates and their use in immunochromatography assay. Anal. Chem. 75, 4043–4049 (2003)

    Article  PubMed  CAS  Google Scholar 

  10. Kaul, Z., Yaguchi, T., Kaul, S.C., Hirano, T., Wadhwa, R., Taira, K.: Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res. 13, 503–507 (2003)

    Article  PubMed  Google Scholar 

  11. Goldman, E.R., Clapp, A.R., Anderson, G.P., Uyeda, H.T., Mauro, J.M., Medintz, I.L., Mattoussi, H.: Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684–688 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. Chowdhury, S., Ahmed, H., Chatterjee, B.P.: Purification and characterization of an α-D-galactopyranosyl binding lectin from Artocarpus lakoocha seeds. Carbohydr. Res. 159, 137–148 (1987)

    Article  CAS  Google Scholar 

  13. Chatterjee, B.P., Ahmed, H., Chowdhury, S.: Further characterization of Artocarpus lakoocha lectin (Artocarpin) purified using rivanol. Carbohydr. Res. 180, 97–110 (1988)

    Article  CAS  Google Scholar 

  14. Chowdhury, S., Chatterjee, B.P.: Artocarpin–galactomannan interaction: Characterization of combining site of artocarpin. Phytochemistry 32, 243–249 (1993)

    Article  PubMed  CAS  Google Scholar 

  15. Singh, T., Chatterjee, U., Wu, J.H., Chatterjee, B.P., Wu, A.M.: Carbohydrate recognition factors of a Ta (Gal β1→ 3 GalNAC α 1 →Ser/Thr) and Tn (GalNAc α 1 →Ser/Thr) specific lectin isolated from the seeds of Artocarpus lakoocha. Glycobiology 15, 67–78 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. Wu, A.M., Pigman, W.: Preparation and characterization of armadillo submandibular glycoproteins. Biochem. J. 161, 37–47 (1977)

    PubMed  CAS  Google Scholar 

  17. Duk, M., Lisowska, E., Wu, J.H., Wu, A.M.: The biotin/avidin mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal. Biochem. 221, 266–272 (1994)

    Article  PubMed  CAS  Google Scholar 

  18. Teichberg, V.I., Aberdam, D., Erez, U., Pinelli, E.: Affinity-repulsion chromatography, principle and application to lectins. J. Biol. Chem. 263, 14086–14092 (1988)

    PubMed  CAS  Google Scholar 

  19. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  PubMed  CAS  Google Scholar 

  20. Bhowal, J., Guha, A.K., Chatterjee, B.P.: Purification and molecular characterization of a sialic acid specific lectin from the phytopathogenic fungus Macrophomina phaseolina. Carbohydr. Res. 340, 1973–1982 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. Reisfled, R.A., Lewis, U.S., Williams, D.E.: Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195, 281–283 (1962)

    Article  Google Scholar 

  22. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685 (1970)

    Article  Google Scholar 

  23. Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proct. Natl. Acad. Sci. USA. 76, 4350–4354 (1979)

    Article  CAS  Google Scholar 

  24. Edman, P., Begg, G.: A protein sequencer. Eur. J. Biochem. 1, 80–91 (1967)

    Article  PubMed  CAS  Google Scholar 

  25. Szabo, A., Stolz, L., Granzow, R.: Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr. Opin. Struct. Biol. 5, 699–705 (1995)

    Article  PubMed  CAS  Google Scholar 

  26. Bhattacharyya, I., Mandal, C., Chowdhury, M.: Functional heterogeneity of sialic acid binding agglutinin of rat uteri towards in vitro lymphocyte transformation. Am. J. Reprod. Immunl. 20, 81–86 (1989)

    CAS  Google Scholar 

  27. Mandal, C., Chowdhury, M.: The polyclonal activation of lymphocytes and T cell mitogenicity by a unique sialic-acid-binding lectin from the hemolymph of Achatina fulica snail. Immunopharmacology 20, 63–72 (1990)

    Article  PubMed  CAS  Google Scholar 

  28. Wong, J.H., Ng, T.B.: Isolation and characterization of a glucose/mannose/rahmnose specific lectinfrom the knife bean Canavalia gladiata. Arch. Biochem. Biophys. 439, 91–98 (2005)

    Article  PubMed  CAS  Google Scholar 

  29. Ngai, P.H.K., Ng, T.B.: A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem. Biophys. Res. Com. 314, 988–993 (2004)

    Article  PubMed  CAS  Google Scholar 

  30. Chatterjee, B.P., Ahmed, H.: Lectins from plants and animals: carbohydrate specificity, unity in diversity and diversity in unity. Biochem. Arch. 14, 1–5 (1998)

    CAS  Google Scholar 

  31. Namjuntra, P., Muanwongyathi, P., Chulavatnatol, R.: A sperm agglutinating lectin from seeds of jack fruit (Artocarpus heterophyllus). Biochem. Biophys. Res. Commun. 128, 833–839 (1985)

    Article  PubMed  CAS  Google Scholar 

  32. Chei, W.G., Hounsell, E.F., Cashmore, G.C., Rosankie-wicz, J.R., Bauer, C.J., Feeney, J., Feizi, T., Lawson, A.M.: Neutral oligosaccharides of bovine submaxillary mucin. A combined mass spectrometry and 1H-NMR study. Eur. J. Biochem. 203, 257–268 (1992)

    Article  Google Scholar 

  33. Podbielska, M., Fredriksson, S.A., Nilsson, B., Lisowaska, E., Krotkeiewski, H.: ABH blood group antigens in O-glycans of human glycophorin A. Arch. Biochem. Biophys. 429, 145–153 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. Nilsson, B., Norden, N.E., Svensson, S.: Structural studies on the carbohydrate portion of fetuin. J. Biol.Chem. 254, 4545–4553 (1979)

    PubMed  CAS  Google Scholar 

  35. Springer, G.: T and Tn pancarcinoma markers: autoantigenic adhesion molecules in pathogenesis, pre-biopsy carcinoma detection and long-term breast-carcinoma immunotherapy. Crit. Rev. Oncogen. 6, 57–85 (1995)

    CAS  Google Scholar 

  36. Springer, G.: Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis and immunotherapy. J. Mol. Med. 75, 594–602 (1997)

    Article  PubMed  CAS  Google Scholar 

  37. Singh, J., Singh, J., Kamboj, S.S.: A novel mitogenic and antiproliferative lectin from a wild cobra lily, Arisaema flavum. Biochem. Biophys. Res. Commun. 318, 1057–1065 (2004)

    Article  PubMed  CAS  Google Scholar 

  38. Wang, H.X., Ng, T.B., Liu, W.K., Ooi, V.E.C., Chang, S.T.: Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mangolicum. Int. Peptide Protein Res. 46, 508–513 (1995)

    CAS  Google Scholar 

  39. Xiaochao, X.U., Chuanfang, W.U., Chao, L.I.U., Yongting, L.U.O., Jian, L.I., Xinping, Z.H.A.O., Van Damme, E., Jinku, B.: Purification and characterization of a mannose-binding lectin from the rhizomes of Aspidistra elatior Blume with antiproliferative activity. Acta. Biochim. Biophys. Sinica 39, 507–519 (2007)

    Article  CAS  Google Scholar 

  40. Wong, J.J., Ng, T.B.: Purification of a trypsin-stable lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activity. Biochem. Biophys. Res. Commun. 301, 545–550 (2003)

    Article  PubMed  CAS  Google Scholar 

  41. Wang, H., Ng, T.B., Ooi, V.E., Liu, W.K.: Effects of lectins with different carbohydrate binding specificities on hepatoma, choriocarcinoma, melanoma and osteosarcoma cell lines. Int. J. Biochem. Cell Biol. 32, 365–372 (2000)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Sujata Sharma of Department of Biophysics, All India Institutes of Medical Sciences, New Delhi for performing amino acid sequence analysis. The assistance of Dr. Syamal Roy of Indian Institute of Chemical Biology, Kolkata and Mr. Gautam Mondal of West Bengal University of Technology, Kolkata is gratefully acknowledged. This study was financially supported by a research grant (BT/PR4462/BRB/10/1350/2003) of the Department of Biotechnology, Government of India, New Delhi to B.P.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnu P. Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, U., Bose, P.P., Dey, S. et al. Antiproliferative effect of T/Tn specific Artocarpus lakoocha agglutinin (ALA) on human leukemic cells (Jurkat, U937, K562) and their imaging by QD-ALA nanoconjugate. Glycoconj J 25, 741–752 (2008). https://doi.org/10.1007/s10719-008-9134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9134-8

Keywords

Navigation