Skip to main content
Log in

SPR and ITC determination of the kinetics and the thermodynamics of bivalent versus monovalent sugar ligand–lectin interactions

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A kinetic study of the interaction of bivalent and monovalent sugar ligands with a lectin was undertaken with the aid of surface plasmon resonance (SPR) method. The study involved a series of bivalent α-d-mannopyranoside containing sugar ligands, with systematic variation in the distance between the sugar ligands. The detailed kinetic studies showed that bivalent ligands underwent a faster association (k on) and a slower dissociation (k off) of the ligand–lectin complexes, in comparison to the monovalent ligand–lectin complexes. The kinetic constants were complemented further by assessing the thermodynamic parameters with the aid of isothermal titration calorimetry (ITC). The initiation of cross-linking of ligand–lectin interactions emerge from the early stages of the complexation. The dynamic light scattering (DLS) and the transmission electron microscopy (TEM) techniques allowed judging the sizes and morphologies of the complex in the solution and solid states, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ITC:

Isothermal titration calorimetry

SPR:

Surface plasmon resonance

CMC:

Critical micellar concentration

DLS:

Dynamic light scattering

TEM:

Transmission electron microscopy

References

  1. Sharon, N., Lis, H.: Lectins as cell recognition molecules. Science 246, 227–234 (1989)

    Article  PubMed  CAS  Google Scholar 

  2. Lee, Y.C., Lee, R.T.: Carbohydrate–protein interactions: basics of glycobiology. Acc. Chem. Res. 28, 321–327 (1995)

    Article  CAS  Google Scholar 

  3. Wong, C.-H.: Carbohydrate-based Drug Discovery, 1st edn. (vols 1 and 2). Wiley-VCH, Weinheim, (2003)

    Google Scholar 

  4. Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996)

    Article  PubMed  CAS  Google Scholar 

  5. Crocker, P.R., Feizi, T.: Carbohydrate recognition systems: functional triads in cell–cell interactions. Curr. Opin. Struct. Biol. 6, 679–691 (1996)

    Article  PubMed  CAS  Google Scholar 

  6. Dam, T.K., Brewer, C.F.: Thermodynamic studies of lectin–carbohydrate interactions by isothermal titration calorimetry. Chem. Rev. 102, 387–430 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. Lundquist, J.J., Toone, E.J.: The cluster glycoside effect. Chem. Rev. 102, 555–578 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. Mammen, M., Choi, S.-K., Whitesides, G.M.: Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998)

    Article  Google Scholar 

  9. Monsigny, M., Mayer, R., Roche, A.C.: Sugar–lectin interactions: sugar clusters, lectin multivalency and avidity. Carbohydr. Lett. 4, 35–52 (2000)

    PubMed  CAS  Google Scholar 

  10. Kiessling, L.L., Gestwicki, J.E., Strong, L.E.: Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed. 45, 2348–2368 (2006)

    Article  CAS  Google Scholar 

  11. Fan, E., Zhang, Z., Minke, W.E., Hou, Z., Verlinde, C.L.M.J., Hol, W.G.J.: High-affinity pentavalent ligands of Escherichia coli heat-labile enterotoxin by modular structure-based design. J. Am. Chem. Soc. 122, 2663–2664 (2000)

    Article  CAS  Google Scholar 

  12. Pavel, I.K., Joanna, M.S., George, M., Glen, D.A., Hong, L., Navraj, S.P., Randy J.R., Bundle, D.R.: Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000)

    Article  CAS  Google Scholar 

  13. Turnbull, W.B., Kalovidouris, S.A., Stoddart, J.F.: Synthetic carbohydrate dendrimers. Part 9. Large oligosaccharide-based glycodendrimers. Chem. Eur. J. 8, 2988–3000 (2002)

    Article  CAS  Google Scholar 

  14. Roy, R.: Syntheses and some applications of chemically defined multivalent glycoconjugates. Curr. Opin. Struct. Biol. 6, 692–702 (1996)

    Article  PubMed  CAS  Google Scholar 

  15. Reina, J.J., Maldonado, O.S., Tabarani, G., Fieschi, F., Rojo, J.: Mannose glycoconjugates functionalized at positions 1 and 6. Binding analysis to DC-SIGN using biosensors. Bioconjug. Chem. 18, 963–969 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. Reiger, J., Stoffelbach, F., Cui, D., Imberty, A., Lameignere, E., Jerome, C., Amely-velty, R.: Mannosylated poly(ethylene oxide)-b-Poly(ɛ-caprolactone)diblock copolymers: synthesis, characterization, and interaction with a bacterial lectin. Biomacromolecules 8, 2717–2725 (2007)

    Article  CAS  Google Scholar 

  17. Mangold, S.L., Cloninger, M.J.: Binding of monomeric and dimeric Concanavalin A to mannose-functionalized dendrimers. Org. Biomol. Chem. 4, 2458–2465 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Gestwicki, J.E., Cairo, C.W., Strong, L.E., Oetjen, K.A., Kiessling, L.L.: Influencing receptor–ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922–14933 (2002)

    Article  PubMed  CAS  Google Scholar 

  19. Dam, T.K., Oscarson, S., Roy, R., Das, S.K., Page, D., Macaluso, F., Brewer, C.F.:Thermodynamic, kinetic, and electron microscopy studies of concanavalin A and Dioclea grandiflora lectin cross-linked with synthetic divalent carbohydrates. J. Biol. Chem. 280, 8640–8646 (2005)

    Article  PubMed  CAS  Google Scholar 

  20. Srinivas, O., Mitra, N., Surolia, A., Jayaraman, N.: Photoswitchable multivalent sugar ligands: synthesis, isomerization and lectin binding studies of azobenzene–glycopyranoside conjugates. J. Am. Chem. Soc. 124, 2124–2125 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. Srinivas, O., Mitra, N., Surolia, A., Jayaraman, N.: Photoswitchable cluster glycosides as tool to probe carbohydrate–protein interactions: synthesis and lectin-binding studies of azobenzene containing multivalent ligands. Glycobiology 15, 861–873 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. Murthy, B.N., Sampath, S., Jayaraman, N.: Synthesis and Langmuir studies of bivalent and monovalent α-D-mannopyranosides with Lectin Con A. Langmuir 21, 9591–9596 (2005)

    Article  CAS  Google Scholar 

  23. Murthy, B.N., Voelcker, N.H., Jayaraman, N.: Evaluation of α-D-mannopyranoside glycolipids–lectin interactions by surface plasmon resonance methods. Glycobiology 16, 822–832 (2006)

    Article  PubMed  CAS  Google Scholar 

  24. Cassel, S., Debig, C., Benvegnu, T., Chaimbault, P., Lafosse, M., Plusquellec, D., Rollin, P.: Original synthesis of linear, branched and cyclic oligoglycerol standards. Eur. J. Org. Chem. 2001, 875–896 (2001)

    Article  Google Scholar 

  25. Ness, R.K., Fletcher, Jr H.G., Hudson, C.S.: The reaction of 2,3,4,6-tetrabenzoyl-α-D-glucopyranosyl bromide and 2,3,4,6-tetrabenzoyl-α-D-mannopyranosyl bromide with methanol. Certain benzoylated derivatives of D-Glucose and D-Mannose. J. Am. Chem. Soc. 72, 2200–2205 (1950)

    Article  CAS  Google Scholar 

  26. Goldstein, I.J., Poretz, R.D.: The Lectins: Properties, Functions and Applications in Biology and Medicine. Academic, New York, pp. 35–244 (1998)

    Google Scholar 

  27. Goddard, E.D., Turro, N.J., Kuo, P.L.: Ananthapadmanabhan KP, Fluorescence probes for critical micelle concentration determination. Langmuir 1, 352–355 (1985)

    Article  CAS  Google Scholar 

  28. Monsigny, M., Frison, N., Duverger, E., Roche, C.A.: Carbohydrate–protein interactions assessed by surface plasmon resonance. Biochemie 85, 167–179 (2003)

    Article  CAS  Google Scholar 

  29. Surolia, A., Sharma, S., Sikder, B.K., Thomas, J.C., Kapoor, M.: Exploring kinetics and mechanism of protein–sugar recognition by surface plasmon resonance. Methods Enzymol. 362, 312–329 (2003)

    Article  PubMed  Google Scholar 

  30. Gallego, R.E., Haseley, H.R., van Miegem, V.F.L., Vliegenthart, J.F.G., Kamerling, J.P.: Identification of carbohydrates binding to lectins by using surface plasmon resonance in combination with HPLC profiling. Glycobiology 14, 373–386 (2004)

    Article  CAS  Google Scholar 

  31. Kisseling, L.L., Maly, J.D., Kanai, M., Mann, A.D.: Probing low affinity and multivalent interactions with surface plasmon resonance: ligands for Concanavalin A. J. Am. Chem Soc. 120, 10575–10582 (1998)

    Article  Google Scholar 

  32. Myszka, D.G., Hansely, P., Simons, S.P., Lemotte, P.K., Brown, T.A., Geoghegan K.F., Hoth, L.S., Rich, R.L.B.: Kinetic analysis of estrogen receptor/ligand interactions. Proc. Natl. Acad. Sci. USA 99, 8562–8567 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. Nagata, Y., Burger, M.M.: Wheat germ agglutinin: molecular characteristics and specificity for sugar binding. J. Biol. Chem. 249, 3116–3122 (1973)

    Google Scholar 

  34. An alternate protocol of the ligand immobilization onto the sensor surface was attempted. Thus, ligand 7 was self-assembled into an alkyl thiol functionalized HPA surface. The lectin was introduced as the analyte and an increase in the SPR response, corresponding to the lectin binding onto the ligand-immobilized surface, was observed. However, the subsequent dissociation phase and the regeneration of the sensor surface devoid of the lectin led to drastic decreases in the response units, denoting the loss of the ligand also from the surface during the dissociation and surface regeneration steps. In the light of the loss of the immobilized ligand after the de-complexation, this alternate effort could not be continued further

  35. Berne, B.J., Pecora, R.: Dynamic Light Scattering. Wiley, New York (1976)

    Google Scholar 

  36. Parkin, S., Rupp, B., Hope, H.: Atomic resolution structure of Con A at 120 K, Acta Cryst D52, 1161–1168 (1996)

    CAS  Google Scholar 

Download references

Acknowledgement

We thank Department of Science and Technology, New Delhi, for a financial support. We thank Professor Venugopal and Mr. Alok for DLS measurements. BNM thanks the Council of Scientific and Industrial Research for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avadhesha Surolia or Narayanaswamy Jayaraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, B.N., Sinha, S., Surolia, A. et al. SPR and ITC determination of the kinetics and the thermodynamics of bivalent versus monovalent sugar ligand–lectin interactions. Glycoconj J 25, 313–321 (2008). https://doi.org/10.1007/s10719-007-9076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9076-6

Keywords

Navigation