Skip to main content

Advertisement

Log in

Potentiation of angiogenic switch in capillary endothelial cells by cAMP: A cross-talk between up-regulated LLO biosynthesis and the HSP-70 expression

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

During tumor growth and invasion, the endothelial cells from a relatively quiescent endothelium start proliferating. The exact mechanism of switching to a new angiogenic phenotype is currently unknown. We have examined the role of intracellular cAMP in this process. When a non-transformed capillary endothelial cell line was treated with 2 mM 8Br-cAMP, cell proliferation was enhanced by ∼70%. Cellular morphology indicated enhanced mitosis after 32–40 h with almost one-half of the cell population in the S phase. Bcl-2 expression and caspase-3, -8, and -9 activity remained unaffected. A significant increase in the Glc3Man9GlcNAc2-PP-Dol biosynthesis and turnover, Factor VIIIC N-glycosylation, and cell surface expression of N-glycans was observed in cells treated with 8Br-cAMP. Dol-P-Man synthase activity in the endoplasmic reticulum membranes also increased. A 1.4–1.6-fold increase in HSP-70 and HSP-90 expression was also observed in 8Br-cAMP treated cells. On the other hand, the expression of GRP-78/Bip was 2.3-fold higher compared to that of GRP-94 in control cells, but after 8Br-cAMP treatment for 32 h, it was reduced by 3-fold. GRP-78/Bip expression in untreated cells was 1.2–1.5-fold higher when compared with HSP-70 and HSP-90, whereas that of the GRP-94 was 1.5–1.8-fold lower. After 8Br-cAMP treatment, GRP-78/Bip expression was reduced 4.5–4.8-fold, but the GRP-94 was reduced by 1.5–1.6-fold only. Upon comparison, a 2.9-fold down-regulation of GRP-78/Bip was observed compared to GRP-94. We, therefore, conclude that a high level of Glc3Man9GlcNAc2-PP-Dol, resulting from 8Br-cAMP stimulation up-regulated HSP-70 expression and down-regulated that of the GRP-78/Bip, maintained adequate protein folding, and reduced endoplasmic reticulum stress. As a result capillary endothelial cell proliferation was induced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMEM:

minimal essential medium with Earle’s salt

DMEM:

Dulbeccos’ minimal essential medium

NP-40:

Nonidet P-40

SDS:

sodium dodecyl sulfate

PBS:

phosphate-buffer-saline

PAGE:

polyacrylamide gel electrophoresis

HRP:

horseradish peroxidase

Dol-P:

dolicylmonophosphate

DMSO:

dimethylsolfoxide

Con A:

concanavalin A

WGA:

wheat germ agglutinin

cAMP:

adenosine 3′, 5′-cyclic monophosphate

PKA:

cAMP-dependent protein kinase

ER:

endoplasmic reticulum

LLO:

Glc3Man9GlcNAc2-PP-Dol

Dol-P-Man:

dolichol-P-Mannose

Dol-P-Glc:

dolichol-P-glucose

GPT:

UDP-GlcNAc-dolichol-P GlcNAc-1-P transferase

DPMS:

Dol-P-Man synthase

UPR:

unfolded protein response

References

  1. Conway, E.M., Collen, D., Carmeliet, P.: Molecular mechanisms of blood vessel growth. Cardiovascular Res. 49, 507–521 (2001)

    Article  CAS  Google Scholar 

  2. Hamada, J., Cavanaugh, P.G., Lotan, O.: Seperable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for metastasiss. Br. J. Cancer Res. 66, 349–354 (1992)

    CAS  Google Scholar 

  3. Folkman, J.: Angiogenesis and breast cancer. J. Clin. Oncol. 12, 441–443 (1994)

    CAS  PubMed  Google Scholar 

  4. Stuart, S.B., Smith, N., Brunner, N., Harris, A.L.: High level of uPA and PA-1 are associated with highly angiogenic breast carcinoma. J. Pathol. 170, 388a (1993)

    Google Scholar 

  5. Gross, J.L., Moscatalli, D., Jaffe, E.A., Rifkin, D.: Plasminogen activator and collagenase production by cultured capillary endothelial cells. J. Cell Biol. 95, 974–981 (1982)

    Article  CAS  PubMed  Google Scholar 

  6. Vartanuan, R., Weidner, N.: Correlation of intratumoral endothelial cell proliferation with microvessel density (tumor angiogenesis) and tumor-cell proliferation in breast carcinoma. Am. J. Pathol. 144, 1188–1194 (1994)

    Google Scholar 

  7. Dvorak, H.F., Tumors: wounds that do not heal. Similarities between tumor generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986)

    Article  CAS  PubMed  Google Scholar 

  8. Ellgaard, L., Molinari, M., Helenius, A.: Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Kornfeld, R., Kornfeld, S.: Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985)

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, A., Trowbridge, I.S., Hyman, R., Kornfeld, S.: Structure of the lipid-linked oligosaccharides that accumulate in class E Thy-1-negative mutant lymphoma. Cell 17, 509–515 (1979)

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee, D.K., Scher, M.G., Waechter, C.J., Amphomycin: Effect of the lipopeptide antibiotic on the glycosylation and extraction of dolichyl monophosphate in calf brain membranes. Biochemistry 20, 1561–1568 (1981)

    Article  CAS  PubMed  Google Scholar 

  12. Lehrman, M.A.: Biosynthesis of N-acetylglucosamine-P-P-dolichol, the committed step of asparagine-linked oligosaccharide assembly. Glycobiology 1, 553–562 (1991)

    CAS  PubMed  Google Scholar 

  13. Kean, E.L., Rush, J.S., Waechter, C.J.: Activation of GlcNAc-P-P-dolichol synthesis by mannosylphosphoryldolichol is stereospecific and requires a saturated alpha-isoprene unit. Biochemistry 33, 10508–10512 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. Kean, E.L., Wei, Z., Anderson, V.E., Zhang, N., Sayre, L.M.: Regulation of the biosynthesis of N-acetylglucosaminyl- pyrophosphoryldolichol, feedback and product inhibition. J. Biol. Chem. 274, 34072–34082 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Banerjee, D.K., Kousvelari, E.E., Baum, B.J., cAMP-mediated protein phosphorylation of microsomal membranes increases mannosylphospho dolichol synthase activity. Proc. Natl. Acad. Sci. (USA) 84, 6389–6393 (1987)

    CAS  Google Scholar 

  16. Banerjee, D.K., Aponte, E., DaSilva, J.J.: Low expression of lipid-linked oligosaccharide due to a functionally altered Dol-P-Man synthase reduces protein glycosylation in cAMP-dependent protein kinase deficient Chinese hamster ovary cells. Glyconjugate. J. 21, 479–486 (2004)

    Article  CAS  Google Scholar 

  17. Banerjee, D.K., Carrasquillo, E.A., Hughy, P., Schutzbach, J.S., Martínez, J.A., Baksi, K., In. vitro. phosphorylation by cAMP-dependent protein kinase up-regulates recombinant Saccharomyces cerevisiae mannosylphosphodolichol. J. Biol. Chem. 280, 4174–4181 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee, D.K.: Microenvironment of endothelial cell growth and regulation of protein N-glycosylation. Indian. J. Biochem. Biophys. 25, 8–13 (1988)

    CAS  PubMed  Google Scholar 

  19. Oliveira, C.M., Banerjee, D.K.: Role of extracellular signaling on endothelial cell proliferation and protein N-glycosylation. J. Cellular Physiol. 144, 467–472 (1990)

    Article  CAS  Google Scholar 

  20. Banerjee, D.K., Vendrell-Ramos, M.: Is asparagine-linked protein glycosylation an obligatory requirement for angiogenesis? Indian J. Biochem. Biophys. 30, 389–394 (1993)

    CAS  PubMed  Google Scholar 

  21. Tavárez-Pagán, J.J., Oliveira, C.M., Banerjee, D.K.: Insulin up-regulates a Glc3Man9GlcNAc2-PP-Dol pool in capillary endothelial cells not essential for angiogenesis. Glycoconjugate J. 20, 179–188 (2004)

    Article  Google Scholar 

  22. Banerjee, D.K.: Regulation of mannosylphosphoryl dolichol synthase activity by cAMP-dependent protein phosphorylation. In Highlights of Modern Biochemistry, edited by Kotyk, A., Skoda, J., Paces, V., Kostka, V (VSP International Science Publishers, Zeist, The Neetherlands, 1989), p. 379

    Google Scholar 

  23. Das, S.K., Mukherjee, S., Banerjee, D.K.: Beta-adrenoreceptors of multiple affinities in a clonal capillary endothelial cell line and its functional implications. Molec. Cellular Biochem. 140, 49–54 (1994)

    Article  CAS  Google Scholar 

  24. Banerjee, D.K., Ornberg, R.L., Youdim, M.B., Heldman, E., Pollard, H.B.: Endothelial cells from bovine adrenal medulla develop capillary-like growth patterns in culture. Proc. Natl. Acad. Sci. (USA) 82, 4702–4706 (1985)

    CAS  Google Scholar 

  25. Martínez, J.A.: Torres-Negrón, I., Amigó, L.A, Banerjee, D.K.: Expression of Glc3Man9GlcNAc2-PP-Dol is a prerequisite for capillary endothelial cell proliferation. Cellular Molec. Biochem. 45, 137–152 (1999)

    Google Scholar 

  26. Krishan, A.: Rapid flow cytometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol. 66, 188–195 (1975)

    Article  CAS  PubMed  Google Scholar 

  27. Vindelov, L.L.: Flow cytometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. Virchows Arch. (B) 24, 227–231 (1977)

    CAS  Google Scholar 

  28. Banerjee, D.K., Tavárez, J.J., Oliveira, C.M.: Expression of blood clotting factor VIII:C gene in capillary endothelial cells. FEBS Letts. 306, 33–37 (1992)

    Article  CAS  Google Scholar 

  29. Bradford, M.M.: A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee, D.K.: Amphomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. J. Biol. Chem. 264, 2024–2028 (1989)

    CAS  PubMed  Google Scholar 

  31. Kluck, R.M., Martin, S.J., Hoffman, B.M., Zhou, J.S., Green, D.R., Newmeyer, D.D.: Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16, 4639–4649 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. Morishima, N., Nakanishi, K., Takenoouchi, H., Shibata, T., Yasuhiko, Y.: An endoplasmic reticulum stress-specific caspase cascade in apoptosis. J. Biol. Chem. 277, 34287–34294 (1977)

    Article  Google Scholar 

  33. Thornberry, N.A., Lazebnik, Y.: Caspases: enemies within. Science 281, 1312–1316 (1998)

    Article  CAS  PubMed  Google Scholar 

  34. Cryns, V.L., Yuan, J.: Proteases to die for. Genes. Dev. 12, 1551–1570 (1998)

    CAS  PubMed  Google Scholar 

  35. Harding, H.P., Calfon, M., Urano, F., Novoa, I., Ron, D.: Transcriptional and translational control in the Mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 18, 575–599 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. Buku, B., Horwich, A.L.: The Hsp, 70 and Hsp, 60 chaperones machines. Cell 92, 351–366 (1998)

    Article  Google Scholar 

  37. Pearl, L.H., Prodromon, C.: Structure and in vivo function of HSP-90. Curr. Opin. Struct. Biol. 10, 46–51 (2000)

    Article  CAS  PubMed  Google Scholar 

  38. Taylor, S.S., Buechler, J.A., Yonemoto, W.: cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu. Rev. Biochem. 59, 971–1005 (1990)

    Article  CAS  PubMed  Google Scholar 

  39. Conti, M., Richter, W., Mehats, C., Livera, G., Park J-Y, Jin, C.: Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J. Biol. Chem. 276, 5493–5496 (2003)

    Article  Google Scholar 

  40. Rubin, C.S.: A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim. Biophys. Acta. 1224, 467–479 (1994)

    PubMed  Google Scholar 

  41. Flockhart, D.A., Corbin, J.D.: Regulatory mechanisms in the control of protein kinases. Crit. Rev. Biochem. 12, 133–186 (1982)

    CAS  Google Scholar 

  42. Gottesman, M.M.: Genetics of cAMP-dependent protein kinases. In Molecular Cell Genetics, Gottesman MM (ed), John Wiley and Sons Inc., New York, USA, pp. 711–743 (1985)

    Google Scholar 

  43. Krebs, E.G., Beavo, J.A.: Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 48, 923–959 (1979)

    Article  CAS  PubMed  Google Scholar 

  44. Kuo, J.F., Greengard, P.: Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrance (1969) of 3′,5′-monophosphate-dependent protein kinases in various tissues and phyla of the animal kingdom. Proc. Natl. Acad. Sci. (USA) 64, 1349–1355 (1969)

    CAS  Google Scholar 

  45. Lohmann, S.M., Walter, U.: Regulation of the cellular and subcellular concentrations and distribution of cyclic nucelotide-dependent protein kinases. Adv. Cyclic Nucleotide Protein Phosphorylation Res., 18, 63–177 (1984)

    CAS  PubMed  Google Scholar 

  46. Walsh, D.A., Perkins, J.P., Krebs, E.G.: An adenosine 3′,5′-monophosphate dependent protein kinase from rabbit skeletal muscle. J. Biol. Chem. 234, 3763–3774 (1968)

    Google Scholar 

  47. Morimato, R.I., Tissieres, A., Georgopoulos, C.: The biology of heat shock proteins and molecular chaperones. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press) (1994)

    Google Scholar 

  48. Hartl, F.U.: Molecular chaperones in cellular protein folding. Nature 381, 571–580 (1996)

    Article  CAS  PubMed  Google Scholar 

  49. Flynn, G.C., Chappell, T.G., Rothman, J.E.: Peptide-binding specificity of the molecular chaperone Bip. Nature 353, 726–730 (1991)

    Article  CAS  PubMed  Google Scholar 

  50. Rüdiger, S., Germeroth, L., Bukau, B.: Interaction of Hsp 70 chaperones with substrates. Nature Struct. Biol. 4, 342–349 (1997)

    Article  PubMed  Google Scholar 

  51. Szabo, A., Korzun, R., Hartl, F.U., Flanagan, J.: A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to determined protein substrates. EMBO J. 15, 408–417 (1996)

    CAS  PubMed  Google Scholar 

  52. Buchberger, A., Theyssen, H., Schröder, H., McCarty, J.S., Virgallita, G., Milkereit, P., Reinstein, J., Buku, B.: Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem. 270, 16903–16910 (1995)

    Article  CAS  PubMed  Google Scholar 

  53. Hendrick, J.P., Hartl, F.U.: Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349–384 (1993)

    Article  CAS  PubMed  Google Scholar 

  54. Landry, S.J., Gierasch, L.M.: Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu. Rev. Biophys. Biomolec. Struct. 23, 645–669 (1994)

    Article  CAS  Google Scholar 

  55. Randall, L.L., Hardy, S.J.S.: High selectivity with low specificity: how SecB has solved the paradox of chaperone binding. Trends Biochem. Sci. 20, 65–69 (1995)

    Article  CAS  PubMed  Google Scholar 

  56. Neuport, W., Hartl, F.U., Craig, E.A., Pfanner, N.: How do polypeptides cross the mitochondrial membranes? Cell 63, 447–450 (1990)

    Article  Google Scholar 

  57. Simon, S.M., Peskin, C.S., Oster, G.F.: What drives the translocation of proteins? Proc. Natl. Acad. Sci. (USA) 89, 3770–3774 (1992)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, J.A., Tavárez, J.J., Oliveira, C.M. et al. Potentiation of angiogenic switch in capillary endothelial cells by cAMP: A cross-talk between up-regulated LLO biosynthesis and the HSP-70 expression. Glycoconj J 23, 209–220 (2006). https://doi.org/10.1007/s10719-006-7926-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-7926-2

Keywords

Navigation