Skip to main content
Log in

Efflux of sphingolipids metabolically labeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid from normal cells in culture

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The membrane complex lipids of human fibroblasts and differentiated rat cerebellar granule cells in culture were metabolically radiolabeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid. A relevant efflux of radioactive sphingolipids and phosphatidylcholine was observed from cells to the culture medium in the presence of fetal calf serum. This event was independent of the concentration and structure of the metabolic precursor administered to cells, and it was linearly time-dependent. The radioactive lipid patterns present in the medium were different from those present in the cells. Radioactive sphingomyelin and ganglioside GM3 containing short acyl chains were the main species present in the medium from human fibroblasts, while sphingomyelin and GD3 ganglioside in that from neuronal cells. In the absence of proteins in the culture medium, the efflux of complex lipids was much lower than in the presence of serum, and the patterns of released molecules were again different from those of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

 :

Ganglioside and glycosphingolipid nomenclature is in accordance with Svennerholm [1], and the IUPAC-IUBMB recommendations [2].

GlcCer:

ß-Glc-(1-1)-Cer

LacCer:

ß-Gal-(1-4)-ß-Glc-(1-1)-Cer GM3, II3Neu5AcLacCer, α-Neu5Ac-(2-3)-ß-Gal-(1-4)-ß-Glc-(1-1)-Cer

GM1:

II3Neu5AcGg4Cer, ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc-(1-1)-Cer

GD3:

II3(Neu5Ac)2LacCer, α-Neu5Ac-(2-8)-α-Neu5 Ac-(2-3)-ß-Gal-(1-4)-ß-Glc-(1-1)-Cer

GD1a:

IV3Neu5AcII3Neu5AcGgOse4Cer, α-Neu5Ac-(2-3)-ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc-(1-1)-Cer

GD1b:

II3(Neu5Ac)2GgOse4Cer, ß-Gal-(1-3)-ß-Gal NAc-(1-4)-[α-Neu5Ac-(2-8)-α-Neu5Ac-(2-3)]ß-Gal-(1-4)-ß-Glc-(1-1)-Cer; O-Ac-GT1b, sIV3 Neu5AcII3[α-Neu5, 9Ac2-(2-8)-α-Neu5Ac-(2-3)]GgOse4Cer

GT1b:

IV3Neu5AcII3(Neu5Ac)2GgOse4Cer, α-Neu5 Ac-(2-3)-ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-8)-α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc-(1-1)-Cer

GQ1b:

IV3(Neu5Ac)2II3(Neu5Ac)2GgOse4Cer, α-Neu 5Ac-(2-8)-α-Neu5Ac-(2-3)-ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-8)-α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc-(1-1)-Cer

Neu5Ac:

N-acetylneuraminic acid

Cer:

ceramide, N-acyl-sphingosine

Sph:

sphingosine, (2S,3R,4E)-2-amino-1,3-dihydroxy -octadecene; [1-3H]sphingosine, (2S,3R,4E)-2-amino-1,3-dihydroxy-[1-3H]octadecene

PE:

phosphatidylethanolamine

SM:

sphingomyelin

BME:

Basal modified Eagle’s medium

EMEM:

Eagle’s minimum essential medium

FCS:

fetal calf serum

HPTLC:

high-performance thin-layer chromatography

PMSF:

phenyl-methylsulfonyl fluoride

SDS:

sodium dodecylsulfate

PAGE:

polyacrylamide gel electrophoresis

PBS:

phosphate-buffered saline

References

  1. Svennerholm, L.: Ganglioside designation. Adv. Exp. Biol. Med. 125, 11 (1980)

    CAS  Google Scholar 

  2. IUPAC-IUBMB Joint Commission on Biochemical Nomenclature The nomenclature of lipids. Pure. Appl. Chem. 69, 2475–87 (1997); Carbohydr. Res. 312, 167–75 (1998)

    Google Scholar 

  3. Riboni, L., Viani, P., Bassi, R., Prinetti, A., Tettamanti, G.: The role of sphingolipids in the process of signal transduction. Prog. Lipid. Res. 36, 153–95 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. Sonnino, S., Cantú, L., Corti, M., Acquotti, D., Venerando, B.: Aggregative properties of gangliosides in solution. Chem. Phys. Lipids. 71, 21–45 (1994)

    Article  CAS  PubMed  Google Scholar 

  5. Koynova, R., Caffrey, M.: Phases and phase transitions of the sphingolipids. Biochim. Biophys. Acta. 1255, 213–36 (1995)

    PubMed  Google Scholar 

  6. Rueda, R., Tabsh, K., Ladisch, S.: Detection of complex gangliosides in human amniotic fluid. FEBS Lett. 328, 13–6 (1993)

    Article  CAS  PubMed  Google Scholar 

  7. Cotterchio, M., Seyfried, T.N.: Serum gangliosides in mice with metastatic and non-metastatic brain tumors. J. Lipid. Res. 35, 10–14 (1994)

    CAS  PubMed  Google Scholar 

  8. Valentino, L.A., Ladish, S.: Circulating tumor gangliosides enhance platelet activation. Blood 83, 2872–2877 (1994)

    CAS  PubMed  Google Scholar 

  9. Ladisch, S., Chang, F., Li, R., Cogen, P., Johnson, D.: Detection of medulloblastoma and astrocytoma-associated ganglioside GD3 in cerebrospinal fluid. Cancer Lett. 120, 71–78 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura, O., Iwamori, M., Matsutani, M., Takakura, K.: Ganglioside GD3 shedding by human gliomas. Acta. Neurochir. 109, 34–36 (1991)

    Article  CAS  Google Scholar 

  11. Li, R., Gage, D., Ladisch, S.: Biosynthesis and shedding of murine lymphoma gangliosides. Biochim. Biophys. Acta. 1170, 283–290 (1993)

    CAS  PubMed  Google Scholar 

  12. Olshefski, R., Ladisch, S.: Intercellular transfer of shed tumor cell gangliosides. FEBS Lett. 386, 11–14 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. Chang, F., Li, R., Ladisch, S.: Shedding of gangliosides by human medulloblastoma cells. Exp. Cell. Res. 234, 341–346 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. Olshefski, R., Ladisch, S.: Synthesis, shedding, and intercellular transfer of human medulloblastoma gangliosides: abrogation by a new inhibitor of glucosylceramide synthase. J. Neurochem. 70, 467–472 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Ladisch, S., Li, R., Olson, E.: Ceramide structure predicts tumor ganglioside immunosuppressive activity. Proc. Natl. Acad. Sci. USA. 91, 1974–1978 (1994)

    CAS  PubMed  Google Scholar 

  16. Chigorno, V., Giannotta, C., Ottico, E., Sciannamblo, M., Mikulak, J., Prinetti, A., Sonnino, S.: Sphingolipid uptake by cultured cells: Complex aggregates of cell sphingolipids with serum proteins and lipoproteins are rapidly catabolised. J. Biol. Chem. 28, 2668–2675, (2005)

    Google Scholar 

  17. Carter, H.E., Rothfus, J.A., Gigg, R.: Biochemistry of the sphingolipids: XII. conversion of cerebrosides to ceramides and sphingosine; structure of Gaucher cerebroside. J. Lipid. Res. 2, 228–234 (1961)

    Google Scholar 

  18. Toyokuni, T., Nisar, M., Dean, B., Hakomori, S.: A facile and regiospecific titration of sphingosine: synthesis of (2 S,3R,4E)-2-amino-4-octadecene-1,3-diol-1-3H. J. Labeled. Compd. Radiopharm. 29, 567–574 (1991)

    CAS  Google Scholar 

  19. Riboni, L., Bassi, R., Sonnino, S., Tettamanti, G.: Formation of free sphingosine and ceramide from exogenous ganglioside GM1 by cerebellar granule cells in culture. FEBS Lett. 300, 188–192 (1992)

    Article  CAS  PubMed  Google Scholar 

  20. Prinetti, A., Chigorno, V., Tettamanti, G., Sonnino, S.: Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture: a compositional study. J. Biol. Chem. 275, 11658–11665 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Leroy, J.G., Ho, W.M., McBrinn, M.C., Zielke, K., Jacob, J., O’Brien, J.S.: I-Cell disease: biochemical studies. Pediatr. Res. 6, 752–757 (1972)

    CAS  PubMed  Google Scholar 

  22. Gallo, V., Ciotti, M., Coletti, A., Aloisi, F., Levi, G.: Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl. Acad. Sci. USA. 79, 7919–7923 (1982)

    CAS  PubMed  Google Scholar 

  23. Thangnipon, W., Kingsbury, A., Webb, M., Balazs, R.: Observations on rat cerebellar cells in vitro: influence of substratum, potassium concentration and relationship between neurones and astrocytes. Dev. Brain Res. 313, 177–189 (1983)

    Article  CAS  Google Scholar 

  24. Kingsbury, A.E., Gallo, V., Woodhams, P.L., Balazs, R.: Survival, morphology and adhesion properties of cerebellar interneurones cultured in chemically defined and serum-supplemented medium. Brain. Res. 349, 17–25 (1985)

    CAS  PubMed  Google Scholar 

  25. Chigorno, V., Riva, C., Valsecchi, M., Nicolini, M., Brocca, P., Sonnino, S.: Metabolic processing of gangliosides by human fibroblasts in culture. Formation and re-cycling of separate pools of sphingosine. Eur. J. Biochem. 250, 661–669 (1997)

    Article  CAS  PubMed  Google Scholar 

  26. Tettamanti, G., Bonali, F., Marchesini, S., Zambotti, V.: A new procedure for the extraction and purification and fractionation of brain gangliosides. Biochim. Biophys. Acta. 296, 160–170 (1973)

    CAS  PubMed  Google Scholar 

  27. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    CAS  PubMed  Google Scholar 

  28. Prinetti, A., Marano, N., Prioni, S., Chigorno, V., Mauri, L., Casellato, R., Tettamanti, G., Sonnino, S.: Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture. Glycoconjugate J. 17, 223–232 (2000)

    Article  CAS  Google Scholar 

  29. Dolo, V., D’Ascenzo, S., Sorice, M., Pavan, A., Sciannamblo, M., Prinetti, A., Chigorno, V., Tettamanti, G., Sonnino, S.: New approaches to the study of sphingolipid enriched membrane domains: the use of electron microscopy autoradiography to reveal metabolically tritium labeled sphingolipids in cell cultures. Glycoconjugate J. 17, 261–268 (2000)

    Article  CAS  Google Scholar 

  30. Prinetti, A., Prioni, S., Chigorno, V., Karagogeos, D., Tettamanti, G., Sonnino, S.: Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule Tag-1 by anti-GD3 ganglioside monoclonal antibody, J. Neurochem. 78, 1162–1167 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. Dawson, G., Matalon, R., Dorfman, A.: Glycosphingolipids in cultured human skin fibroblasts. I. Characterization and metabolism in normal fibroblasts. J. Biol. Chem. 247, 5944–5950 (1972)

    CAS  PubMed  Google Scholar 

  32. Chigorno, V., Tettamanti, G., Sonnino, S.: Metabolic processing of gangliosides by normal and Salla cultured human fibroblasts in culture: a study performed by administering radioactive GM3 ganglioside. J. Biol. Chem. 271, 21738–21744 (1996)

    Article  CAS  PubMed  Google Scholar 

  33. Riboni, L., Bassi, R., Prinetti, A., Tettamanti, G.: Salvage of catabolic products in ganglioside metabolism: a study on rat cerebellar granule cells in culture. FEBS Lett. 391, 336–340 (1996)

    Article  CAS  PubMed  Google Scholar 

  34. Riboni, L., Bassi, R., Prinetti, A., Viani, P., Tettamanti, G.: Predominance of the acylation route in the metabolic processing of exogenous sphingosine in neural and extraneural cells in culture. Biochem. J. 338, 147–151 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Sadeghlar, F., Sandhoff, K.: van Echten-Deckert, G.: Cell type specific localization of sphingomyelin biosynthesis. FEBS Lett. 478, 9–12 (2000)

    Article  CAS  PubMed  Google Scholar 

  36. Pagano, R.E., Puri, V., Dominguez, M., Marks, D.L.: Membrane traffic in sphingolipid storage diseases. Traffic. 1, 807–815 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Additional information

This work was supported by COFIN-PRIN, Consiglio Nazionale delle Ricerche (PF Biotechnology), Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chigorno, V., Sciannamblo, M., Mikulak, J. et al. Efflux of sphingolipids metabolically labeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid from normal cells in culture. Glycoconj J 23, 159–165 (2006). https://doi.org/10.1007/s10719-006-7921-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-7921-7

Keywords

Navigation