Skip to main content

Advertisement

Log in

Obtaining Ceramic Based on Si3N4 and TiN by Spark Plasma Sintering

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The dependences of the microstructure and physical-mechanical properties of Si3N4–TiN-based ceramic in a wide range of mass ratios of the components are examined. The sintering process and the accompanying physical and chemical processes, viz. the dependence of the hardness and density of the material on the ratios of the conducting phase of titanium nitride and the dielectric phase of silicon nitride with values above and below the percolation threshold, are examined. A ceramic based on pure titanium nitride with high physical-mechanical characteristics (H = 21.5 GPa) is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ching-Huan Lee, Horng-Hwa Lu and Chang-An Wang, et al., “Microstructure and mechanical properties of TiN/Si3N4 nanocomposites by spark plasma sintering (SPS),” J. Alloys Compounds, 508, 540 – 545 (2010).

    Article  Google Scholar 

  2. Y. G. Gogotsi, “Particulate silicon nitride-based composites,” J. Mater. Sci., 29(10), 2541 – 2556 (1994).

    Article  Google Scholar 

  3. J. L. Huang, S. Y. Chen, and M. T. Lee, “Microstructure, chemical aspects and mechanical properties of TiB2/Si3N4 and TiN/Si3N4 composites,” J. Mater. Res., 9(9), 2349 – 2354 (1994).

    Article  Google Scholar 

  4. Z. Guo, G. Blugan, R. Kirchner, et al., “Microstructure and electrical properties of Si3N4/TiN composites sintered by hot pressing and spark plasma sintering,” Ceram. Int., 33, 1223 – 1229 (2007).

    Article  Google Scholar 

  5. S. Balakrishnan, J. S. Burnellgray, and P. K. Datta, “Preliminary studies of TiN particulate-reinforced Si3N4 matrix composite (SYALON 501) following exposure in oxidizing and oxychloridizing environments,” Key Eng. Mater., 99(1), 279 – 290 (1995).

    Article  Google Scholar 

  6. C. C. Liu and J. L. Huang, “Effect of the electrical discharge machining on strength and reliability of TiN/Si3N4 composites,” Ceram. Int., 29(6), 679 – 687 (2003).

    Article  Google Scholar 

  7. M. Yoshimura, O. Komura, and A. Yamakawa, “Microstructure and tribological properties of nano-sized Si3N4,” Scr. Mater., 44(8 – 9), 1517 – 1521 (2001).

    Article  Google Scholar 

  8. S. Kawano, J. Takahashi, and S. Shimada, “Highly electroconductive TiN/Si3N4 composite ceramics fabricated by spark plasma sintering of Si3N4 particles with a nano-sized TiN coating,” J. Mater. Chem., 12(2), 361 – 365 (2002).

    Article  Google Scholar 

  9. L. Gao, J. G. Li, T. Kusunose, and K. Niihara, “Preparation and properties of TiN–Si3N4composites,” J. Europ. Ceram. Soc., 24(2), 381 – 386 (2004)

    Article  Google Scholar 

  10. S. Kawano, J. Takahashi, and S. Shimada, “Fabrication of TiN/Si3N4 ceramics by spark plasma sintering of Si3N4 particles coated with nanosized TiN prepared by controlled hydrolysis of Ti(O-i-C3H7)4 ,” J. Amer. Ceram. Soc., 86(4), 701 – 705 (2003).

    Article  Google Scholar 

  11. M. Tokita, “Mechanism of spark plasma sintering,” J. Mater. Sci., 5(45), 78 – 82 (2004).

    Google Scholar 

  12. V. I. Lysenko, A. G. Anisimov, and V. I. Mali, “Microhardness of ceramic obtained from oxide nanopowders by the conventional and SPS methods,” Steklo Keram., No. 12, 15 – 17 (2014); V. I. Lysenko, A. G. Anisimov, and V. I. Mali, “Microhardness of ceramic obtained from oxide nanopowders by the conventional and SPS methods,” Glass Ceram., 71(11 – 12), 431 – 433 (2014).

  13. A. V. Hmelov and I. Shteins, “Properties of mullite-zirconium ceramic obtained by spark plasma sintering,” Steklo Keram., No. 12, 17 – 22 (2011); A. V. Hmelov and I. Shteins, “Properties of mullite-zirconium ceramic obtained by spark plasma sintering,” Glass Ceram., 68(11 – 12), 399 – 404 (2011).

  14. E. Ayas, A. Kara, and F. Kara, “A novel approach for preparing electrically conductive α/β SiAlON–TiN composites by spark plasma sintering,” J. Ceram. Soc. Jpn., 116(7), 812 – 814 (2008).

    Article  Google Scholar 

  15. A. A. Sivkov, A. S. Saigash, A. Ya. Pak, and A. A. Evdokimov, “Direct production of nanodisperse powders and compositions in a hypersonic jet of electric-discharge plasma,” Nanotekhnika, No. 2(18), 38 – 43 (200).

  16. J. Wan, R.-G. Duan, and A. K. Mukherjee, “Spark plasma sintering of silicon nitride/silicon carbide nano-composites with reduced additive amounts,” Scr. Mater., 53, 663 – 667 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Evdokimov.

Additional information

Translated from Steklo i Keramika, No. 10, pp. 32 – 37, October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimov, A.A., Sivkov, A.A. & Gerasimov, D.Y. Obtaining Ceramic Based on Si3N4 and TiN by Spark Plasma Sintering. Glass Ceram 72, 381–386 (2016). https://doi.org/10.1007/s10717-016-9794-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-016-9794-y

Key words

Navigation