Skip to main content
Log in

The space of light rays: Causality and L–boundary

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

A Correction to this article was published on 08 September 2022

This article has been updated

Abstract

The space of light rays \({\mathcal {N}}\) of a conformal Lorentz manifold \((M,{\mathcal {C}})\) is, under some topological conditions, a manifold whose basic elements are unparametrized null geodesics. This manifold \({\mathcal {N}}\), strongly inspired on R. Penrose’s twistor theory, keeps all information of M and it could be used as a space complementing the spacetime model. In the present review, the geometry and related structures of \({\mathcal {N}}\), such as the space of skies \(\varSigma \) and the contact structure \({\mathcal {H}}\), are introduced. The causal structure of M is characterized as part of the geometry of \({\mathcal {N}}\). A new causal boundary for spacetimes M prompted by R. Low, the L-boundary, is constructed in the case of 3–dimensional manifolds M and proposed as a model of its construction for general dimension. Its definition only depends on the geometry of \({\mathcal {N}}\) and not on the geometry of the spacetime M. The properties satisfied by the L–boundary \(\partial M\) permit to characterize the obtained extension \({\overline{M}}=M\cup \partial M\) and this characterization is also proposed for general dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Change history

Notes

  1. The expression of the equation of Jacobi fields depends on the sign of definition of the Riemann curvature tensor \({\mathbf {R}}\) and on the order of the arguments. So,

    $$\begin{aligned} J'' - {\mathbf {R}}\left( J,\gamma '\right) \gamma ' = 0, J'' + {\mathbf {R}}\left( \gamma ',J\right) \gamma ' = 0, J'' - {\mathbf {R}}\left( \gamma ',J\right) \gamma ' = 0 \end{aligned}$$

    are other expressions we can find in the literature.

  2. This is not an automatic property for any \({\mathcal {U}}\in {\mathcal {N}}\) and \(\overline{{\mathcal {U}}}\in \overline{{\mathcal {N}}}\). If \(U=\varSigma ({\mathcal {V}}) \) and \({\overline{U}}=\varSigma (\overline{{\mathcal {U}}})\) such that \(\varPhi \left( U\right) \subset {\overline{U}}\), then we can choose \({\mathcal {U}}=\phi ^{-1}\left( \phi \left( {\mathcal {V}}\right) \cap \overline{{\mathcal {U}}}\right) \subset {\mathcal {V}}\). Now, if \(X\subset {\mathcal {V}}\), since \(\varPhi \left( U\right) \subset {\overline{U}}\) then \(\phi \left( X\right) \subset \phi \left( {\mathcal {V}}\right) \cap \overline{{\mathcal {U}}}\) and since \(\phi \) is a diffeomorphism, then \(X\in {\mathcal {U}}\). So we have \(U=\varSigma \left( {\mathcal {U}}\right) = \varSigma \left( {\mathcal {V}}\right) \) and \(\phi \left( {\mathcal {U}}\right) \subset \overline{{\mathcal {U}}}\).

  3. This can be shown if we notice that, since U is globally hyperbolic, by [51, Thm. 3.78], there exists a diffeomorphism \(h:C\times \mathbb {R}\rightarrow U\) such that \(C_{\lambda }=h\left( C\times \{\lambda \}\right) \) is a smooth spacelike Cauchy surface in U. Without any lack of generality, we can assume that \(C=C_0\) and \(C_{-}=C_c\) for some \(c\in \mathbb {R}\). Observe that any light ray can be parametrized by \(\gamma (s)=\mathrm {exp}_{\gamma (0)}\left( s\cdot \gamma '(0)\right) \) then, if \(p_2:C\times \mathbb {R}\rightarrow \mathbb {R}\) is the canonical projection, then the equation \(p_2 \circ h^{-1}\left( \gamma (s)\right) =c\) can be written in coordinates by an equation such that \(F(x,y,\theta ,s)=c\). Then, the existence of \(s_{\gamma }=s_{\gamma }(x,y,\theta )\) follows from the Theorem of implicit function.

References

  1. Aké, L., Flores, J.L., Sánchez, M.: Structure of globally hyperbolic spacetimes with timelike boundary. Rev. Mat. Iberoam. 37, 45–94 (2021). https://doi.org/10.4171/rmi/1201

    Article  MathSciNet  MATH  Google Scholar 

  2. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, tensor analysis and applications. Springer Verlag, New York (1988)

    MATH  Google Scholar 

  3. Arnold, V.I.: Mathematical methods of classical mechanics. Springer Verlag, New York (1989)

    Google Scholar 

  4. Bautista, A., Ibort, A., Lafuente, J.: On the space of light rays of a spacetime and a reconstruction theorem by Low. Class. Quantum Grav. 31, 075020 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bautista, A., Ibort, A., Lafuente, J.: Causality and skies: is refocussing necessary? Class. Quantum Grav. 32, 105002 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bautista, A., Ibort, A., Lafuente, J.: The canonical contact structure in the space of light rays. A Mathematical Tribute to Professor José María Montesinos Amilibia. Dpto. Geometría y Topología, UCM, Madrid. (2015)

  7. Bautista, A., Ibort, A., Lafuente, J., Low, R.: A conformal boundary for space-times based on light-like geodesics: The \(3\)-dimensional case. J. Math. Phys. 58, 022503 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Bautista, A., Ibort, A., Lafuente, J.: L-extensions and L-boundary of conformal space-times. Gen. Relativ. Gravit. 50, 153 (2018). https://doi.org/10.1007/s10714-018-2479-9

    Article  ADS  MATH  Google Scholar 

  9. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Marcel Dekker, New York (1996)

    MATH  Google Scholar 

  10. Bernal, A.N., Sánchez, M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Brickell, F., Clark, R.S.: Differentiable manifolds. An Introduction. Van Nostrand Reinhold, London (1970)

    MATH  Google Scholar 

  12. Budic, R., Sachs, R.K.: Causal boundaries for general relativistic spacetimes. J. Math. Phys. 15, 1302–1309 (1974)

    ADS  MATH  Google Scholar 

  13. Cannas da Silva, A.: Lectures on symplectic geometry. Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  14. Ciaglia, F.M., Di Cosmo, F., Ibort, A., Marmo, G., Schiavone, L., Zampini, A.: Causality in Schwinger’s picture of quantum mechanics. Entropy 24, 75 (2022). https://doi.org/10.3390/e24010075

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chernov, V., Rudyak, Y.: Linking and causality in globally hyperbolic space-times. Comm. Math. Phys. 279, 309–354 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Chernov, V., Nemirovski, S.: Legendrian links, causality, and the Low conjecture. Geom. Funct. Analysis 19, 1320–1333 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Chernov, V., Nemirovski, S.: Non-negative Legendrian isotopy in \(ST^{*}M\). Geom. Topol. 14, 611–626 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Chernov, V., Nemirovski, S.: Universal orderability of Legendrian isotopy classes. J. Symplectic Geom. 14(1), 149–170 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Chernov, V., Nemirovski, S.: Redshift and contact forms. J. Geom. Phys. 123, 379–384 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Chernov, V.: Conjectures on the relations of linking and causality in causally simple spacetimes. Class. Quantum Grav. 35, 105010 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Chernov, V.: Causality and Legendrian linking for higher dimensional spacetimes. J. Geom. Phys. 133, 26–29 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Field, T.R., Low, R.: Causal relations via linking in twistor space. J. Geom. Phys. 28, 339–348 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Flores, J.L., Herrera, J., Sánchez, M.: On the final definition of the causal boundary and its relation with the conformal boundary. Adv. Theor. Math. Phys. 15(4), 991–1057 (2011)

    MathSciNet  MATH  Google Scholar 

  24. García-Parrado, A., Senovilla, J.M.M.: Causal structures and causal boundaries. Class. Quantum Grav. 22, R1–R84 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Geiges, H.: An introduction to contact topology. Cambridge University Press (2008)

  26. Geroch, R.P.: Local characterization of singularities in general relativity. J. Math. Phys. 9, 450–465 (1968)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Geroch, R.P., Kronheimer, E.H., Penrose, R.: Ideal points in Space-Time. Proc. Roy. Soc. London. A 327, 545–567 (1968)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Guillemin, V.: Cosmology in \((2+1)\)-dimensions, cyclic models, and deformations of \(M_{2,1}\). (AM–121). Princeton University Press, (1989)

  29. Harris, S.G.: Universality of the future chronological boundary. J. Math. Phys. 39(10), 5427–5445 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Harris, S.G.: Topology of the future chronological boundary: universality for spacelike boundaries. Class. Quantum Grav. 17(3), 551–603 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Hartman, P.: Ordinary differential equations. Wiley, New York (1964)

    MATH  Google Scholar 

  32. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  33. Hedicke, J., Minguzzi, E., Schinnerl, B., Steinbauer, R., Suhr, S.: Causal simplicity and (maximal) null pseudoconvexity. Class. Quantum Grav. 38, 227002 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Khesin, B., Tabachnikov, S.: Pseudo-Riemannian geodesics and billiards. Adv. Math. 221, 1364–1396 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Kinlaw, P.A.: Refocusing of light rays in space-time. J. Math. Phys. 52, 052505 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Kulkarni, R.S.: Conformal structures and Möbius structures. Conformal geometry (R.S. Kulkarni & U. Pinkall eds. Friedrich Vieweg & sohn, Braunshweig/Wiesbaden (1988)

  37. Lafontaine, J.: Conformal geometry from the Riemannian viewpoint. Conformal geometry (R.S. Kulkarni & U. Pinkall eds.). Friedrich Vieweg & sohn, Braunshweig/Wiesbaden (1988)

  38. Landau, L.D., Lifshitz, E.M.: The classical theory of fields, 3rd edn. Pergamon Press, Oxford, New York (1971)

    MATH  Google Scholar 

  39. Libermann, P., Marle, C.M.: Symplectic geometry and analytical mechanic. D. Reidel Publishing Company, Dordrecht (1987)

    MATH  Google Scholar 

  40. Low, R.J.: Causal relations and spaces of null geodesics, Ph.D. Thesis, Oxford University (1988)

  41. Low, R.J.: The geometry of the space of null geodesics. J. Math. Phys. 30, 809–811 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Low, R.J.: Twistor linking and causal relations. Class. Quant. Grav. 7, 177–187 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Low, R.J.: Spaces of causal paths and naked singularities. Class. Quant. Grav. 7, 943–954 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Low, R.J.: Twistor linking and causal relations in exterior Schwarzschild space. Class. Quant. Grav. 11, 453–456 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Low, R.J.: Stable singularities of wave-fronts in general relativity. J. Math. Phys. 39, 3332–3335 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Low, R.J.: The space of null geodesics. Nonlinear Anal. Theory Methods Appl. 47 (5), 3005–3017 (2001). https://doi.org/10.1016/S0362-546X(01)00421-7

  47. Low, R.J.: The space of null geodesics (and a new causal boundary). Lecture Notes in Physics 692, Springer, Berlin Heidelberg, New York (2006), 35–50

  48. Marín–Salvador, A., Rubio, R.: On the space of null geodesics of a spacetime: the compact case, Engel geometry and retrievability. Preprint arXiv:2112.06955, (2021)

  49. Marolf, D., Ross, S.: Plane waves: to infinity and beyond! Class. Quant. Grav. 19, 6289–6302 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Marolf, D., Ross, S.R.: A new recipe for causal completions. Class. Quant. Grav. 20, 4085–4117 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Minguzzi, E., Sánchez, M.: The causal hierarchy of space-times. Recent developments in pseudo-Riemannian geometry. ESI Lect. Math. Phys, 299–358. (Eur. Math. Soc., Zürich, 2008)

  52. Minguzzi, E.: Lorentzian causality theory. Living Rev. Relativ. 22, 3 (2019). https://doi.org/10.1007/s41114-019-0019-x

    Article  ADS  MATH  Google Scholar 

  53. Natário, J.: Causal relations in the manifold of light rays. Ph.D. Thesis, Oxford University (2000)

  54. Natário, J.: Linking and causality in \((2+1)\)-dimensional static spacetimes. Class. Quantum Grav. 19, 3115–3126 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Natário, J., Tod, P.: Linking, Legendrian linking and causality. Proc. London Math. Soc. (3) 88, 251–272 (2004)

    MathSciNet  MATH  Google Scholar 

  56. O’Neill, B.: Semi-Riemannian geometry with applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  57. Penrose, R.: Republication of: Conformal treatment of infinity. Gen. Relativ. Grav. 43, 901–922 (2011). Original paper: Roger Penrose, In: Relativity, groups and topology. Edited by B. deWitt and C. deWitt. Gordon and Breach, New York, London 1964, pp. 565–584

  58. Penrose, R.: The twistor programme. Reports on Mathematical Physics. 12, 65–76 (1977)

    ADS  MathSciNet  Google Scholar 

  59. Penrose, R.: Techniques of differential topology in relativity. Conference series in Applied Mathematics. Conference board of the Mathematical Sciences. University of London, London (1972)

  60. Penrose, R., Rindler, W.: Spinors and space-time, vol. 1. Cambridge Univ. Press, Cambridge (1984)

    MATH  Google Scholar 

  61. Penrose, R., Rindler, W.: Spinors and space-time, vol. 2. Cambridge Univ. Press, Cambridge (1988)

    MATH  Google Scholar 

  62. Rácz, I.: Causal boundary of space-times. Phys. Rev. D 36(6), 1673–1675 (1987)

    ADS  MathSciNet  Google Scholar 

  63. Sánchez, M.: Causal boundaries and holography on wave type spacetimes. Nonlinear Anal. 71, e1744–e1764 (2009)

    MathSciNet  MATH  Google Scholar 

  64. Schmidt, B.G.: A new definition of singular points in general relativity. Gen. Relat. Gravit. 1, 269–280 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Suhr, S.: A counterexample to Guillemin’s Zollfrei Conjecture. J. Topol. Anal. 05, 251–260 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Szabados, L.B.: Causal boundary for strongly causal spaces. Class. Quantum Grav. 5, 121 (1988)

    ADS  MATH  Google Scholar 

  67. Szabados, L.B.: Causal boundary for strongly causal spacetimes II. Class. Quantum Grav. 6, 77 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank two anonymous referees who provided useful comments and suggestions to improve the quality of this paper and A. Bautista would like to thank the organizing committee of the meeting Singularity theorems, causality, and all that. A tribute to Roger Penrose for its kind invitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bautista.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: Singularity theorems, causality, and all that (SCRI21).

The original online version of this article was revised due to open access cancellation.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bautista, A., Ibort, A. & Lafuente, J. The space of light rays: Causality and L–boundary. Gen Relativ Gravit 54, 59 (2022). https://doi.org/10.1007/s10714-022-02942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02942-3

Keywords

Navigation