Skip to main content
Log in

The massive Dirac equation in Kerr geometry: separability in Eddington–Finkelstein-type coordinates and asymptotics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The separability of the massive Dirac equation in the non-extreme Kerr geometry in horizon-penetrating advanced Eddington–Finkelstein-type coordinates is shown. To this end, Kerr geometry is described by a Carter tetrad and the Dirac spinors and matrices are given in a chiral Newman–Penrose dyad representation. Applying Chandrasekhar’s mode ansatz, the Dirac equation is separated into systems of radial and angular ordinary differential equations. Asymptotic radial solutions at infinity, the event horizon, and the Cauchy horizon are explicitly derived. Their decay is analyzed by means of error estimates. Moreover, the eigenfunctions and eigenvalues of the angular system are discussed. Finally, as an application, the scattering of Dirac waves by the gravitational field of a Kerr black hole is studied. This work provides the basis for a Hamiltonian formulation of the massive Dirac equation in Kerr geometry in horizon-penetrating coordinates and for the construction of a functional analytic integral representation of the Dirac propagator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Batic, D.: Scattering for massive Dirac fields on the Kerr metric. J. Math. Phys. 48, 022502 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Brill, D.R., Wheeler, J.A.: Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Carter, B.: Black hole equilibrium states. In: Black holes/Les astres occlus. Ecole d’été Phys. Théor, Les Houches (1972)

  5. Chakrabarti, S.K., Mukhopadhyay, B.: Scattering of Dirac waves off Kerr black holes. Mon. Notices R. Astron. Soc. 317, 979 (2000)

    Article  ADS  Google Scholar 

  6. Chandrasekhar, S.: The solution of Dirac’s equation in Kerr geometry. Proc. R. Soc. Lond. 349, 571 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chandrasekhar, S., Detweiler, S.: On the reflexion and transmission of neutrino waves by a Kerr black hole. Proc. R. Soc. Lond. 352, 325 (1977)

    Article  ADS  Google Scholar 

  8. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983)

    MATH  Google Scholar 

  9. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill Publishing Company Limited, New York (1972)

    MATH  Google Scholar 

  10. Dolan, S.R., Gair, J.R.: The massive Dirac field on a rotating black hole spacetime: angular solutions. Class. Quantum Gravity 26, 175020 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dolan, S.R., Dempsey, D.: Bound states of the Dirac equation on Kerr spacetime. Class. Quantum Gravity 32, 184001 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Doran, C.: New form of the Kerr solution. Phys. Rev. D 61, 067503 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Eddington, A.S.: A comparison of Whitehead’s and Einstein’s formulae. Nature 113, 192 (1924)

    Article  ADS  Google Scholar 

  14. Finkelstein, D.: Past-future asymmetry of the gravitational field of a point particle. Phys. Rev. 110, 965 (1958)

    Article  ADS  MATH  Google Scholar 

  15. Finster, F., Kamran, N., Smoller, J., Yau, S.T.: Non-existence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry. Commun. Pure Appl. Math. 53, 902 (2000)

    Article  MATH  Google Scholar 

  16. Finster, F., Kamran, N., Smoller, J., Yau, S.T.: Decay rates and probability estimates for massive Dirac particles in the Kerr–Newman black hole geometry. Commun. Math. Phys. 230, 201 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Finster, F., Kamran, N., Smoller, J., Yau, S.T.: The long-time dynamics of Dirac particles in the Kerr–Newman black hole geometry. Adv. Theor. Math. Phys. 7, 25 (2003)

    Article  MathSciNet  Google Scholar 

  18. Finster, F., Röken, C.: An integral representation of the massive Dirac propagator in Kerr geometry in Eddington–Finkelstein-type coordinates. arXiv:1606.01509 [gr-qc] (2016)

  19. Fock, V.: Geometrisierung der Diracschen Theorie des Elektrons. Zeitschrift für Physik 57, 261 (1929)

    Article  ADS  MATH  Google Scholar 

  20. Futterman, J.A.H., Handler, F.A., Matzner, R.A.: Scattering from Black Holes. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  21. Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: Spin-s spherical harmonics and \(\eth \). J. Math. Phys. 8, 2155 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Häfner, D.: Creation of fermions by rotating charged black-holes. arXiv:math/0612501 [math.AP] (2006)

  23. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kinnersley, W.: Type D vacuum metrics. J. Math. Phys. 10, 1195 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Newman, E.T., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. O’Neill, B.: The Geometry of Kerr Black Holes. Dover, Mineola (2014)

    MATH  Google Scholar 

  27. Page, D.N.: Dirac equation around a charged, rotating black hole. Phys. Rev. D 14, 1509 (1976)

    Article  ADS  Google Scholar 

  28. Penrose, R.: A spinor approach to general relativity. Ann. Phys. 10, 171 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Press, W.H., Teukolsky, S.A.: Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric. Astrophys. J. 185, 649 (1973)

    Article  ADS  Google Scholar 

  30. Teukolsky, S.A.: Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophys. J. 185, 635 (1973)

    Article  ADS  Google Scholar 

  31. Unruh, W.G.: Separability of the neutrino equations in a Kerr background. Phys. Rev. Lett. 31, 1265 (1973)

    Article  ADS  Google Scholar 

  32. Weyl, H.: Elektron und Gravitation. Zeitschrift für Physik 56, 330 (1929)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Felix Finster and Niky Kamran for many useful discussions and comments, as well as for a careful reading this paper. This work was supported by the DFG research grant “Dirac Waves in the Kerr Geometry: Integral Representations, Mass Oscillation Property and the Hawking Effect.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Röken.

Appendices

Appendix 1: The Newman–Penrose formalism

Let \((\mathfrak {M}, \varvec{g})\) be a Lorentzian 4-manifold endowed with the unique, torsion-free Levi–Civita connection \(\varvec{\omega }\) and dual basis \((\varvec{e}_{\mu })\) and \((\varvec{e}^{\mu })\), \(\mu \in \{0, 1, 2, 3\}\), on sections of the tangent and cotangent bundles \(T\mathfrak {M}\) and \(T^{\star }\mathfrak {M}\), respectively. Further, let \(F\mathfrak {M}\) and \(F^{\star }\mathfrak {M}\) be local (orthonormal or null) frame bundles on \(\mathfrak {M}\). The dual basis on sections of \(F\mathfrak {M}\) and \(F^{\star }\mathfrak {M}\) each consist of four vectors denoted by \((\varvec{e}_{(a)})\) and \((\varvec{e}^{(a)})\), \(a \in \{0, 1, 2, 3\}\). In terms of the original basis vectors, these can be written as \(\varvec{e}_{(a)} = e^{\mu }_{(a)} \varvec{e}_{\mu }\) and \(\varvec{e}^{(a)} = e_{\mu }^{(a)} \varvec{e}^{\mu }\), where \(e^{\mu }_{(a)}\) is a linear map from \(T\mathfrak {M}\) to \(F\mathfrak {M}\), namely a (\(4 \times 4\))-matrix, and \(e_{\mu }^{(a)}\) is its inverse. In the Newman–Penrose formalism [25], the local basis vectors are given by two real-valued null vectors, \(\varvec{l} = \varvec{e}_{(0)} = \varvec{e}^{(1)}\) and \(\varvec{n} = \varvec{e}_{(1)} = \varvec{e}^{(0)}\), as well as by a conjugate-complex pair of null vectors, \(\varvec{m} = \varvec{e}_{(2)} = - \varvec{e}^{(3)}\) and \(\varvec{\overline{m}} = \varvec{e}_{(3)} = - \varvec{e} ^{(2)}\). These have to satisfy the null conditions

$$\begin{aligned} \varvec{l} \cdot \varvec{l} = \varvec{n} \cdot \varvec{n} = \varvec{m} \cdot \varvec{m} = \varvec{\overline{m}} \cdot \varvec{\overline{m}} = 0, \end{aligned}$$
(43)

the orthogonality conditions

$$\begin{aligned} \varvec{l} \cdot \varvec{m} = \varvec{l} \cdot \varvec{\overline{m}} = \varvec{n} \cdot \varvec{m} = \varvec{n} \cdot \varvec{\overline{m}} = 0, \end{aligned}$$
(44)

and the cross-normalization conditions (which depend on the signature convention)

$$\begin{aligned} \varvec{l} \cdot \varvec{n} = - \varvec{m} \cdot \varvec{\overline{m}} = 1. \end{aligned}$$
(45)

The local metric in the Newman–Penrose formalism is non-degenerate and constant. It reads

$$\begin{aligned} \varvec{\eta } = g_{\mu \nu } e^{\mu }_{(a)} e^{\nu }_{(b)} \varvec{e}^{(a)} \otimes \varvec{e}^{(b)} = \varvec{l} \otimes \varvec{n} + \varvec{n} \otimes \varvec{l} - \varvec{m} \otimes \varvec{\overline{m}} - \varvec{\overline{m}} \otimes \varvec{m}. \end{aligned}$$

Since the Levi–Civita connection is torsion-free, the first Maurer–Cartan equation of structure simplifies to

$$\begin{aligned} \text{ d }\varvec{e}^{(a)} = \gamma ^{(a)}_{(b) (c)} \varvec{e}^{(b)} \wedge \varvec{e}^{(c)}, \end{aligned}$$
(46)

where the Ricci rotation coefficients \(\gamma ^{(a)}_{(b) (c)}\) are related to the connection via

$$\begin{aligned} \gamma ^{(a)}_{(b) (c)} \varvec{e}^{(c)} = e_{\mu }^{(a)} \text{ d }e^{\mu }_{(b)} + e_{\mu }^{(a)} e^{\nu }_{(b)} \, \omega ^{\mu }_{\nu }. \end{aligned}$$

In the Newman–Penrose formalism, (46) becomes

$$\begin{aligned} \text{ d }\varvec{l}&= 2 \mathfrak {R}{(\epsilon )} \, \varvec{n} \wedge \varvec{l} - 2 \varvec{n} \wedge \mathfrak {R}{(\kappa \, \varvec{\overline{m}})} - 2 \varvec{l} \wedge \mathfrak {R}{\bigl ([\tau -\overline{\alpha } - \beta ] \, \varvec{\overline{m}}\bigr )} + 2 \text{ i } \, \mathfrak {I}{(\varrho )} \, \varvec{m} \wedge \varvec{\overline{m}} \nonumber \\ \text{ d }\varvec{n}&= 2 \mathfrak {R}{(\gamma )} \, \varvec{n} \wedge \varvec{l} - 2 \varvec{n} \wedge \mathfrak {R}{\bigl ([\overline{\alpha } + \beta - \overline{\pi }] \, \varvec{\overline{m}}\bigr )} + 2 \varvec{l} \wedge \mathfrak {R}{(\overline{\nu } \, \overline{\varvec{m}})} + 2 \text{ i } \, \mathfrak {I}{(\mu )} \, \varvec{m} \wedge \varvec{\overline{m}} \nonumber \\ \text{ d }\varvec{m}&= \overline{\text{ d }\varvec{\overline{m}}} = (\overline{\pi } + \tau ) \, \varvec{n} \wedge \varvec{l} + \bigl (2 \text{ i } \, \mathfrak {I}{(\epsilon )} - \varrho \bigr ) \, \varvec{n} \wedge \varvec{m} - \sigma \, \varvec{n} \wedge \varvec{\overline{m}} + \bigl (\overline{\mu } + 2 \text{ i } \, \mathfrak {I}{(\gamma )}\bigr ) \, \varvec{l} \wedge \varvec{m} \nonumber \\&\qquad \qquad + \overline{\lambda } \, \varvec{l} \wedge \varvec{\overline{m}} - (\overline{\alpha } - \beta ) \, \varvec{m} \wedge \varvec{\overline{m}} \end{aligned}$$
(47)

with the so-called spin coefficients

$$\begin{aligned} \kappa = \gamma _{(2) (0) (0)}&\quad \varrho = \gamma _{(2) (0) (3)}&\quad \epsilon = \tfrac{1}{2} \bigl (\gamma _{(1) (0) (0)} + \gamma _{(2) (3) (0)}\bigr ) \nonumber \\ \sigma = \gamma _{(2) (0) (2)}&\quad \mu = \gamma _{(1) (3) (2)}&\quad \gamma = \tfrac{1}{2} \bigl (\gamma _{(1) (0) (1)} + \gamma _{(2) (3) (1)}\bigr ) \nonumber \\ \lambda = \gamma _{(1) (3) (3)}&\quad \tau = \gamma _{(2) (0) (1)}&\quad \alpha = \tfrac{1}{2} \bigl (\gamma _{(1) (0) (3)} + \gamma _{(2) (3) (3)}\bigr ) \\ \nu = \gamma _{(1) (3) (1)}&\quad \pi = \gamma _{(1) (3) (0)}&\quad \beta = \tfrac{1}{2} \bigl (\gamma _{(1) (0) (2)} + \gamma _{(2) (3) (2)}\bigr ) \nonumber \end{aligned}$$
(48)

and the real and imaginary parts \(\mathfrak {R}{(\cdot )}\) and \(\mathfrak {I}{(\cdot )}\), respectively. The transformations employed in this study are elements of the 2-parameter subgroup of local Lorentz transformations known as class III or spin-boost Lorentz transformations. These renormalize the real-valued Newman–Penrose vectors \(\varvec{l}\) and \(\varvec{n}\), but leave their directions unchanged, and rotate the conjugate-complex pair \(\varvec{m}\) and \(\varvec{\overline{m}}\) by an angle \(\psi \) in the \((\varvec{m}, \varvec{\overline{m}})\)-plane [8]

$$\begin{aligned} \varvec{l} \mapsto \varvec{l}' = \varsigma \, \varvec{l}, \quad \varvec{n} \mapsto \varvec{n}' = \varsigma ^{-1} \, \varvec{n}, \quad \varvec{m} \mapsto \varvec{m}' = e^{\text{ i }\psi } \varvec{m}, \quad \varvec{\overline{m}} \mapsto \varvec{\overline{m}}' = e^{- \text{ i } \psi } \, \varvec{\overline{m}}, \end{aligned}$$
(49)

where \(\varsigma \in \mathbb {R} \backslash \{0\}\) and \(\psi \in \mathbb {R}\) are functions depending on the spacetime coordinates \((x^{\mu })\). There are various aspects of the Newman–Penrose formalism that are not discussed in this appendix such as the different classes of local Lorentz transformations or the Weyl scalars and their algebraic classification. They can be found elsewhere in the literature. The interested reader may be referred to [26, 28].

Appendix 2: The general relativistic Dirac equation

The general relativistic, massive Dirac equation without an external potential is given by [19, 32]

$$\begin{aligned} \bigl (\gamma ^{\mu } \nabla _{\mu } + \text{ i } m\bigr ) \Psi (x^{\mu }) = 0, \end{aligned}$$

where the \(\gamma ^{\mu }\) are the general relativistic Dirac matrices, which satisfy the anticommutator relations \(\{\gamma ^{\mu }, \gamma ^{\nu }\} = 2 g^{\mu \nu } \text{ id }_{\mathbb {C}^4}\), \(\Psi (x^{\mu })\) is a Dirac 4-spinor on sections \(S_x\mathfrak {M} \simeq \mathbb {C}^4\) of the spin bundle \(S\mathfrak {M} = \mathfrak {M} \times \mathbb {C}^4\) on \(\mathfrak {M}\), \(\varvec{\nabla }\) denotes the metric connection on \(S\mathfrak {M}\), and m is the fermion rest mass. Using the chiral 2-spinor representation of the Dirac 4-spinors and matrices [20]

$$\begin{aligned} \Psi = \left( \begin{array}{c} P^A \\ \overline{Q}_{\dot{B}} \\ \end{array}\right) \quad \text{ and } \quad \gamma ^{\mu } = \sqrt{2} \left( \begin{array}{ll} 0 &{} \quad \sigma ^{\mu A \dot{B}}\\ \sigma ^{\mu }_{A \dot{B}} &{} \quad 0 \\ \end{array}\right) , \quad A \in \{1, 2\}, \quad \dot{B} \in \{\dot{1}, \dot{2}\}, \end{aligned}$$

with the 2-component spinors \(P^A\) and \(\overline{Q}_{\dot{B}}\) and the Hermitian \((2 \times 2)\)-Infeld–van der Waerden symbols \(\sigma ^{\mu }_{A \dot{B}}\), we obtain the following 2-spinor form of the Dirac equation

$$\begin{aligned} \begin{aligned} \nabla _{A \dot{B} } P^A + \text{ i } \mu _{\star } \overline{Q}_{\dot{B}}&= 0 \\ \nabla _{A \dot{B}} Q^A + \text{ i } \mu _{\star } \overline{P}_{\dot{B}}&= 0, \end{aligned} \end{aligned}$$
(50)

where \(\mu _{\star } := m/\sqrt{2}\) and \(\nabla _{A \dot{B}} = \sigma ^{\mu }_{A \dot{B}} \nabla _{\mu }\). Note that dotted indices are subjected to conjugated complex transformations. Next, let \(\zeta _{(k)}\) and \(\zeta ^{(k)}\), \(k \in \{1, 2\}\), be (dual) local Newman–Penrose bases for the Dirac 2-spinors. The associated local spinor components can be expressed by \(\mathscr {Y}^{(k)} = \zeta ^{(k)}_{A} \mathscr {Y}^{A}\) and \(\mathscr {Y}_{(k)} = \zeta _{(k)}^{A} \mathscr {Y}_{A}\) with the original 2-spinor components \(\mathscr {Y}^{A}, \mathscr {Y}_{A}\in \mathbb {C}^2\) as well as the \((2 \times 2)\)-matrix \(\zeta ^{(k)}_{A}\) and its inverse \(\zeta _{(k)}^{A}\). In this representation, the metric connection reads

$$\begin{aligned} \nabla _{(k) (\dot{l})} \mathscr {Y}^{(m)} = \zeta ^{A}_{(k)} \overline{\zeta }^{\dot{B}}_{(\dot{l})} \, \zeta ^{(m)}_{C} \nabla _{A \dot{B}} \, \mathscr {Y}^C = \partial _{(k) (\dot{l})} \mathscr {Y}^{(m)} + \Gamma ^{(m)}_{(n) (k) (\dot{l})} \mathscr {Y}^{(n)}, \end{aligned}$$
(51)

where \(\partial _{(k) (\dot{l})} = \sigma ^{\mu }_{(k) (\dot{l})} \partial _{\mu }\) and

$$\begin{aligned} \Gamma ^{(m)}_{(n) (k) (\dot{l})}= & {} \Gamma ^{(m) (\dot{o})}_{(n) (\dot{o}) (k) (\dot{l})} \,\nonumber \\ {}= & {} \sqrt{2} \, \epsilon ^{(m) (q)} \, \epsilon ^{(\dot{o}) (\dot{p})} \, \sigma ^{\mu }_{(q) (\dot{p})} \,\, \sigma ^{\nu }_{(n) (\dot{o})}\,\, \sigma ^{\lambda }_{(k) (\dot{l})} \, e_{\mu }^{(a)} \, e_{\nu }^{(b)} \, e_{\lambda }^{(c)} \, \gamma _{(a) (b) (c)}.\nonumber \\ \end{aligned}$$
(52)

We point out that the 2-dimensional Levi–Civita symbol \(\varvec{\epsilon }\) acts as skew metric on \(\mathbb {C}^2\). Furthermore, the Infeld–van der Waerden symbols yield

$$\begin{aligned} \sigma ^{\mu }_{(k) (\dot{l})} = \left( \begin{array}{cc} l^{\mu } &{} m^{\mu } \\ \overline{m}^{\, \mu } &{} n^{\mu } \\ \end{array}\right) . \end{aligned}$$
(53)

By means of (5153), (48), and the definitions \(\mathscr {F}_1 := P^{(1)}, \mathscr {F}_2 := P^{(2)}, \mathscr {G}_1 := \overline{Q}^{(\dot{2})},\) as well as \(\mathscr {G}_2 := - \overline{Q}^{(\dot{1})}\), the general relativistic Dirac equation (50) in the Newman–Penrose formalism becomes

$$\begin{aligned} \begin{aligned} (l^{\mu } \partial _{\mu } + \varepsilon - \varrho ) \mathscr {F}_1 + (\overline{m}^{\mu } \partial _{\mu } + \pi - \alpha ) \mathscr {F}_2&= \text{ i } \mu _{\star } \mathscr {G}_1 \\ (n^{\mu } \partial _{\mu } + \mu - \gamma ) \mathscr {F}_2 + (m^{\mu } \partial _{\mu } + \beta - \tau ) \mathscr {F}_1&= \text{ i } \mu _{\star } \mathscr {G}_2 \\ (l^{\mu } \partial _{\mu } + \overline{\varepsilon } - \overline{\varrho }) \mathscr {G}_2 - (m^{\mu } \partial _{\mu } + \overline{\pi } - \overline{\alpha }) \mathscr {G}_1&= \text{ i } \mu _{\star } \mathscr {F}_2 \\ (n^{\mu } \partial _{\mu } + \overline{\mu } - \overline{\gamma }) \mathscr {G}_1 - (\overline{m}^{\mu } \partial _{\mu } + \overline{\beta } - \overline{\tau }) \mathscr {G}_2&= \text{ i } \mu _{\star } \mathscr {F}_1. \end{aligned} \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röken, C. The massive Dirac equation in Kerr geometry: separability in Eddington–Finkelstein-type coordinates and asymptotics. Gen Relativ Gravit 49, 39 (2017). https://doi.org/10.1007/s10714-017-2194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2194-y

Keywords

Navigation