Skip to main content
Log in

Parameter estimation of a nonlinear magnetic universe from observations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The cosmological model consisting of a nonlinear magnetic field obeying the Lagrangian \(\mathcal {L}= \gamma F^{\alpha },\, F\) being the electromagnetic invariant, coupled to a Robertson-Walker geometry is tested with observational data of Type Ia Supernovae, Long Gamma-Ray Bursts and Hubble parameter measurements. The statistical analysis show that the inclusion of nonlinear electromagnetic matter is enough to produce the observed accelerated expansion, with not need of including a dark energy component. The electromagnetic matter with abundance \(\varOmega _B\), gives as best fit from the combination of all observational data sets \(\varOmega _B=0.562^{+0.037}_{-0.038}\) for the scenario in which \(\alpha =-1, \varOmega _B=0.654^{+0.040}_{-0.040}\) for the scenario with \(\alpha =-1/4\) and \(\varOmega _B=0.683^{+0.039}_{-0.043}\) for the one with \(\alpha =-1/8\). These results indicate that nonlinear electromagnetic matter could play the role of dark energy, with the theoretical advantage of being a mensurable field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Novello, M., Perez Bergliaffa, S.E., Salim, J.: Phys. Rev. D 69, 127301 (2004). doi:10.1103/PhysRevD.69.127301

    Article  ADS  Google Scholar 

  2. Novello, M., Goulart, E., Salim, J., Perez Bergliaffa, S.: Class. Quantum Gravity 24, 3021 (2007). doi:10.1088/0264-9381/24/11/015

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Vollick, D.N.: Phys. Rev. D 78, 063524 (2008). doi:10.1103/PhysRevD.78.063524

    Article  ADS  MathSciNet  Google Scholar 

  4. Labun, L., Rafelski, J.: Phys. Rev. D 81, 065026 (2010). doi:10.1103/PhysRevD.81.065026

    Article  ADS  Google Scholar 

  5. García-Salcedo, R., Gonzalez, T., Quiros, I.: Phys. Rev. D 89, 084047 (2014). doi:10.1103/PhysRevD.89.084047

    Article  ADS  Google Scholar 

  6. Dyadichev, V., Gal’tsov, D., Zorin, A., Zotov, M.Y.: Phys. Rev. D 65, 084007 (2002). doi:10.1103/PhysRevD.65.084007

    Article  ADS  MathSciNet  Google Scholar 

  7. Elizalde, E., Lidsey, J.E., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 574, 1 (2003). doi:10.1016/j.physletb.2003.08.074

    Article  ADS  MATH  Google Scholar 

  8. Beltran Jimenez, J., Maroto, A.L.: Phys. Rev D 78, 063005 (2008). doi:10.1103/PhysRevD.78.063005

    Article  ADS  Google Scholar 

  9. Beltran Jimenez, J., Maroto, A.L.: JCAP 0903, 016 (2009). doi:10.1088/1475-7516/2009/03/016

    Article  ADS  Google Scholar 

  10. Beltran Jimenez, J., Maroto, A.L.: AIP Conf. Proc. 1122, 107 (2009). doi:10.1063/1.3141226

    Article  ADS  Google Scholar 

  11. Medeiros, L.: Int. J. Mod. Phys. D 23, 1250073 (2012). doi:10.1142/S0218271812500733

    Article  Google Scholar 

  12. Plebański, J.: Lectures on non-linear electrodynamics: an extended version of lectures given at the Niels Bohr Institute and NORDITA, Copenhagen, in October 1968 (NORDITA, 1970)

  13. Mottola, E.: Proceedings of the XLVth Rencontres de Moriond, 2010 Cosmology, edited by E. Auge, J. Dumarchez and J. Tran Tranh an, The Gioi Publishers, Vietnam (2010)

  14. Mosquera Cuesta, H.J., Salim, J.M., Novello, M.: (2007). arXiv: 0710.5188

  15. Born, M., Infeld, L.: Proc. R. Soc. Lond. A 144, 425 (1934)

    Article  ADS  Google Scholar 

  16. Tolman, R.C., Ehrenfest, P.: Phys. Rev. 36, 1791 (1930). doi:10.1103/PhysRev.36.1791

    Article  ADS  Google Scholar 

  17. Armendariz-Picon, C.: JCAP 0407, 007 (2004). doi:10.1088/1475-7516/2004/07/007

    Article  ADS  Google Scholar 

  18. Cembranos, J., Hallabrin, C., Maroto, A., Jareno, S.N.: Phys. Rev. D 86, 021301 (2012). doi:10.1103/PhysRevD.86.021301

    Article  ADS  Google Scholar 

  19. Novello, M.: Int. J. Mod. Phys. A 20, 2421 (2005). doi:10.1142/S0217751X05024717

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Lemoine, D., Lemoine, M.: Phys. Rev. D 52, 1955 (1995). doi:10.1103/PhysRevD.52.1955

    Article  ADS  Google Scholar 

  21. Novello, M., Araujo, A.N., Salim, J.: Int. J. Mod. Phys. A 24, 5639 (2009). doi:10.1142/S0217751X09046321

    Article  ADS  MATH  Google Scholar 

  22. Chayan Ranjit, U.D., Chakraborty, Shuvendu: Astrophys. Space Sci 346, 291 (2013). doi:10.1007/s10509-013-1441-2

    Article  ADS  Google Scholar 

  23. Heisenberg, W., Euler, H.: Z. Phys. 38, 714 (1936)

    Article  ADS  Google Scholar 

  24. Pagels, H., Tomboulis, E.: Nucl. Phys. B 143, 485 (1978). doi:10.1016/0550-3213(78)90065-2

    Article  ADS  MathSciNet  Google Scholar 

  25. Novello, M., Salim, J., Araujo, A.N.: Phys. Rev. D 85, 023528 (2012). doi:10.1103/PhysRevD.85.023528

    Article  ADS  Google Scholar 

  26. Esposito-Farese, G., Pitrou, C., Uzan, J.P.: Phys. Rev. D 81, 063519 (2010). doi:10.1103/PhysRevD.81.063519

    Article  ADS  Google Scholar 

  27. Golovnev, A., Klementev, A.: JCAP 1402, 033 (2014). doi:10.1088/1475-7516/2014/02/033

    Article  ADS  Google Scholar 

  28. Sola, J., Stefancic, H.: Phys. Lett. B624, 147 (2005). doi:10.1016/j.physletb.2005.08.051

    Article  ADS  Google Scholar 

  29. Caldwell, R.: Phys. Lett. B 545, 23 (2002). doi:10.1016/S0370-2693(02)02589-3

    Article  ADS  Google Scholar 

  30. Ade, P., et al.: (2013). arXiv: 1303.5076

  31. Suzuki, N., Rubin, D., Lidman, C., Aldering, G., Amanullah, R., et al.: Astrophys. J. 746, 85 (2012). doi:10.1088/0004-637X/746/1/85

    Article  ADS  Google Scholar 

  32. Moresco, M., Verde, L., Pozzetti, L., Jimenez, R., Cimatti, A.: JCAP 1207, 053 (2012). doi:10.1088/1475-7516/2012/07/053

    Article  ADS  Google Scholar 

  33. Jimenez, R., Loeb, A.: Astrophys. J. 573, 37 (2002). doi:10.1086/340549

    Article  ADS  Google Scholar 

  34. Tsutsui, R., Nakamura, T., Yonetoku, D., Takahashi, K., Morihara, Y.: (2012). arXiv: 1205.2954

  35. Kodama, Y., Yonetoku, D., Murakami, T., Tanabe, S., Tsutsui, R., Nakamura, T.: Mon. Not. R. Astron. Soc. 391, L1 (2008). doi:10.1111/j.1745-3933.2008.00508.x

    Article  ADS  Google Scholar 

  36. Liang, N., Xiao, W.K., Liu, Y., Zhang, S.N.: Astrophys. J. 685, 354 (2008). doi:10.1086/590903

    Article  ADS  Google Scholar 

  37. Wei, H., Zhang, S.N.: Eur. Phys. J. C 63, 139 (2009). doi:10.1140/epjc/s10052-009-1086-z

    Article  ADS  Google Scholar 

  38. Wei, H.: JCAP 1008, 020 (2010). doi:10.1088/1475-7516/2010/08/020

    Article  ADS  Google Scholar 

  39. Wang, Y.: Phys. Rev. D 78, 123532 (2008). doi:10.1103/PhysRevD.78.123532

    Article  ADS  Google Scholar 

  40. Cardone, V.F., Capozziello, S., Dainotti, M.G.: Mon. Not. R. Astron. Soc. 400(2), 775 (2009). doi:10.1111/j.1365-2966.2009.15456.x

    Article  ADS  Google Scholar 

  41. Mosquera Cuesta, H.J., H. Dumet M., Furlanetto, C.: JCAP 0807, 004 (2008). doi:10.1088/1475-7516/2008/07/004

  42. Liang, N., Wu, P., Zhang, S.N.: Phys. Rev. D 81, 083518 (2010). doi:10.1103/PhysRevD.81.083518

    Article  ADS  Google Scholar 

  43. Freitas, R., Goncalves, S., Velten, H.: Phys. Lett. B 703, 209 (2011). doi:10.1016/j.physletb.2011.07.070

    Article  ADS  Google Scholar 

  44. Graziani, C.: New Astron. 16, 57 (2011). doi:10.1016/j.newast.2010.08.001

    Article  ADS  Google Scholar 

  45. Collazzi, A.C., Schaefer, B.E., Goldstein, A., Preece, R.D.: Astrophys. J. 747, 39 (2012). doi:10.1088/0004-637X/747/1/39

    Article  ADS  Google Scholar 

  46. Butler, N.R., Kocevski, D., Bloom, J.S.: Astrophys. J. 694(1), 76 (2009). doi:10.1088/0004-637X/694/1/76

    Article  ADS  Google Scholar 

  47. Shahmoradi, A., Nemiroff, R.: Mon. Not. R. Astron. Soc. 411, 1843 (2011). doi:10.1111/j.1365-2966.2010.17805.x

    Article  ADS  Google Scholar 

  48. Butler, N.R., Bloom, J.S., Poznanski, D.: Astrophys. J. 711, 495 (2010). doi:10.1088/0004-637X/711/1/495

    Article  ADS  Google Scholar 

  49. Dunkley, J., Bucher, M., Ferreira, P.G., Moodley, K., Skordis, C.: Mon. Not. R. Astron. Soc. 356, 925 (2005). doi:10.1111/j.1365-2966.2004.08464.x

    Article  ADS  Google Scholar 

  50. Berg, B.: Markov Chain Monte Carlo Simulations and Their Statistical Analysis: With Web-based Fortran Code. World Scientific, Singapore (2004)

    Book  Google Scholar 

  51. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambrdige University Press, Cambrdige (2003)

    MATH  Google Scholar 

  52. Neal, R.M.: Probabilistic inference using markov chain monte carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto (1993)

  53. Riess, A.G., Macri, L., Casertano, S., Lampeitl, H., Ferguson, H.C., et al.: Astrophys. J. 730, 119 (2011). doi:10.1088/0004-637X/730/2/119

Download references

Acknowledgments

A. M. acknowledges financial support from CONACyT (Mexico) through a Ph.D. Grant. N. B. acknowledges partial support by Conacyt, Project 166581. We also acknowledge to the anonymous referee whose suggestions lead to improve our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariadna Montiel.

Appendices

Appendix 1: Scaling between the scale factor \(a\) and the electromagnetic invariant \(F\)

The energy conservation \(T_{;\mu }^{\mu \nu } = 0\), leads to the equation

$$\begin{aligned} \dot{\rho } + 3 H (\rho +p)=0, \end{aligned}$$
(22)

which also can be derived from Eq. (6). So, using the expressions of \(\rho \) and \(p\), Eq. (2), in terms of the electromagnetic Lagrangian, the scaling between the scale factor \(a\) and the electromagnetic invariant \(F\) can be determined for a Lagrangian with arbitrary dependence on the two electromagnetic invariants \(\mathcal {L}(F,G)\) as

$$\begin{aligned} -\!\dot{F}\mathcal {L}_F + 3 \left( {\frac{\dot{a}}{a}}\right) \left( {- \frac{4}{3} (2E^2+2B^2)\mathcal {L}_F}\right) =0. \end{aligned}$$
(23)

Now, if one restricts to the case \(G=0\) (i.e. no electric field \(E=0\)), then \(F=2B^2\) and

$$\begin{aligned} -\!\mathcal {L}_F \left\{ \dot{F} + 3 \left( {\frac{\dot{a}}{a}}\right) \left( { \frac{4}{3}F}\right) \right\} =0, \end{aligned}$$
(24)

whose solution, given by \(Fa^4=\mathrm{const}\), is independent of the particular form of \(\mathcal {L}(F)\).

Appendix 2: The scale factor as a function of time

The expressions of Friedmann equations for the nonlinear magnetic terms are

$$\begin{aligned} \begin{aligned} \left( {\frac{\dot{a}}{a}}\right) ^2&= - \frac{\mathcal {L}}{3}, \\ \frac{\ddot{a}}{a}&= - \frac{1}{3} (\mathcal {L}-2F\mathcal {L}_F). \end{aligned} \end{aligned}$$
(25)

Knowing that \(\mathcal {L}a^{4 \alpha }=\mathrm{const}\), and using the Friedmann equations, the expression for \(a(t)\) can be determined. Let us consider the following derivative,

$$\begin{aligned} \frac{d}{dt} \left( {a^{(4 \alpha -1)} \dot{a}}\right) = a^{4 \alpha } \left\{ { \frac{\ddot{a}}{a} + (4 \alpha -1) \frac{\dot{a}^2}{a^2}}\right\} , \end{aligned}$$
(26)

and substituting Friedmann’s equation, Eq. (25), we realize that the right hand term is constant,

$$\begin{aligned} \frac{d}{dt} \left( {a^{(4 \alpha -1)} \dot{a}}\right) = {- \frac{2 \alpha \mathcal {L}a^{4 \alpha }}{3}} = \text {const}. \end{aligned}$$
(27)

Finally, integrating for \(a(t)\), it is obtained that \(a(t)= \mathrm{const}(t-t_0)^{1/2 \alpha }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montiel, A., Bretón, N. & Salzano, V. Parameter estimation of a nonlinear magnetic universe from observations. Gen Relativ Gravit 46, 1758 (2014). https://doi.org/10.1007/s10714-014-1758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1758-3

Keywords

Navigation