Skip to main content
Log in

Linear bosonic and fermionic quantum gauge theories on curved spacetimes

  • Editor’s Choice (Research Article)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearised Yang-Mills theory and linearised general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearised pure \(N=1\) supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We are grateful to Ko Sanders for pointing out that the existence of Green’s operators for \(P^\dagger \) does in general not follow from the existence of Green’s operators for \(P\).

References

  1. Bär, C., Fredenhagen, K. (eds.): Quantum field theory on curved spacetimes . Lecture Notes Physics, Vol. 786, p. 1 (2009)

  2. Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. Springer Proc. Math. 17, 359 (2011) [arXiv:1104.1158 [math-ph]]

  3. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorenzian manifolds and quantization. Zuerich, Switzerland: Eur. Math. Soc. (2007) p. 194 [arXiv:0806.1036 [math.DG]]

  4. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43 (2005) [arXiv:gr-qc/0401112]

    Google Scholar 

  5. Bär, C.: Dependence on the spin structure of the Dirac spectrum. In: Bourguignon, J.P., Branson, T., Hijazi, O. (eds.) Seminaires et Congres 4, Global Analysis and Harmonic Analysis, pp. 17–33 (2000) [arXiv:math/0007131]

  6. Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183 (2006) [arXiv:gr-qc/0512095]

    Google Scholar 

  7. Binz, E., Honegger, R., Rieckers, A.: Construction and uniqueness of the \(C^\ast \)-Weyl algebra over a general pre-symplectic space. J. Math. Phys. 45, 2885 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, New York (1995)

    Google Scholar 

  9. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003) [arXiv:math-ph/0112041]

    Google Scholar 

  10. Dappiaggi, C., Hack, T.-P., Pinamonti, N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241 (2009) [arXiv:0904.0612 [math-ph]]

    Google Scholar 

  11. Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. [arXiv:1104.1374 [gr-qc]]

  12. Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. [arXiv:1106.5575 [gr-qc]]

  13. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269, 133–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dimock, J.: Quantized Electromagnetic Field on a Manifold. Rev. Math. Phys. 4, 223–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donaldson, S.: Lecture Notes for TCC Course Geometric Analysis. http://www2.imperial.ac.uk/~skdona/GEOMETRICANALYSIS.PDF (2008)

  17. Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin one fields in curved space-time. J. Math. Phys. 44, 4480 (2003) [arXiv:gr-qc/0303106]

    Google Scholar 

  18. Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. [arXiv:1203.0261 [math-ph]]

  19. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. [arXiv:1110.5232 [math-ph]]

  20. Furlani, E.P.: Quantization of massive vector fields in curved space-time. J. Math. Phys. 40, 2611 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Hack, T.-P., Makedonski, M.: A No-Go Theorem for the consistent quantization of spin 3/2 fields on general curved spacetimes. Phys. Lett. B. 718, 1465–1470 (2013) [arXiv:1106.6327 [hep-th]]

    Google Scholar 

  22. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008) [arXiv:0705.3340 [gr-qc]]

    Google Scholar 

  23. Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  24. Muehlhoff, R.: Cauchy problem and Green’s functions for first order differential operators and algebraic quantization. J. Math. Phys. 52, 022303 (2011) [arXiv:1001.4091 [math-ph]]

    Google Scholar 

  25. Nilles, H.P.: Supersymmetry, supergravity and particle physics. Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  26. Parker, T., Taubes, C.H.: On witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Pfenning, M.J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension. Class. Quant. Gravit. 26, 135017 (2009) [arXiv:0902.4887 [math-ph]]

    Google Scholar 

  28. Sanders, J.A.: Aspects of locally covariant quantum field theory. arXiv:0809.4828 [math-ph]

  29. Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law. [arXiv:1211.6420 [math-ph]]

  30. Schenkel, A., Uhlemann, C.F.: Quantization of the massive gravitino on FRW spacetimes. Phys. Rev. D 85, 024011 (2012) [arXiv:1109.2951 [hep-th]]

  31. Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183 (2006) [arXiv:gr-qc/0512095]

    Google Scholar 

  32. Stewart, J.M., Walker, M.: Perturbations of spacetimes in general relativity. Proc. R. Soc. Lond. A 341, 49 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  33. Taylor, M.E.: Partial Differential Equations I—Basic Theory. Springer, New York (1996)

    Google Scholar 

  34. Van Nieuwenhuizen, P.: Supergravity. Phys. Rep. 68, 189 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  35. Van Proeyen, A.: Tools for supersymmetry. hep-th/9910030

  36. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)

    Book  MATH  Google Scholar 

  37. Wess, J., Bagger, J.: Supersymmetry and Supergravity. Princeton University Press, Princeton (1992)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Claudio Dappiaggi, Klaus Fredenhagen, Hanno Gottschalk, Katarzyna Rejzner, Ko Sanders, Christoph Stephan and Christoph F. Uhlemann for useful discussions and comments. T.P.H. gratefully acknowledges financial support from the Hamburg research cluster LEXI “Connecting Particles with the Cosmos”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas-Paul Hack.

Appendix A: Spinor and gamma-matrix conventions

Appendix A: Spinor and gamma-matrix conventions

We review some aspects of spinors in higher dimensions following [35], being mainly interested in properties of Majorana spinors. Let \(D \text{ mod } 8=2,3,4\) and we denote by \(\eta ^{ab} = \text{ diag }\left( -,+,+,\dots ,+\right) ^{ab}\) the \(D\)-dimensional Minkowski metric. The \(\gamma \)-matrices \(\gamma ^a\), \(a=0,\dots ,D-1\), are complex \(2^{\lfloor D/2\rfloor }\times 2^{\lfloor D/2\rfloor }\)-matrices satisfying the Clifford algebra relations \(\{\gamma ^a,\gamma ^b\}=2\,\eta ^{ab}\). We take the timelike \(\gamma \)-matrix to be antihermitian \({\gamma ^0}^\dagger =-\gamma ^0\) and the spatial \(\gamma \)-matrices hermitian \({\gamma ^i}^\dagger = \gamma ^i\), for all \(i=1,\dots ,D-1\). We further fix \(\beta := i\gamma ^0\) which satisfies \(\beta ^\dagger =\beta \). There exists a charge conjugation matrix \(C\), which is antisymmetric, i.e. \(C^{\mathrm{T}}=-C\), in the dimensions we are considering, see Table 1 in [35]. Further properties are \(C^\dagger = C^{-1}\) and, for all \(a=0,\dots ,D-1\),

$$\begin{aligned} {\gamma ^a}^{\mathrm{T}} = - C\gamma ^a C^{-1}. \end{aligned}$$
(7.1)

We define the charge conjugation operation on spinors \(\chi \in \mathbb C ^{2^{\lfloor D/2\rfloor }}\) by

$$\begin{aligned} \chi ^c := -\beta \,C^*\, \chi ^*, \end{aligned}$$
(7.2)

where \(*\) denotes component-wise complex conjugation. This operation squares to the identity, \({\chi ^c}^c =\chi \), for all \(\chi \). A Majorana spinor is defined by the reality condition \(\chi ^c =\chi \) and the space of Majorana spinors is a real vector space of dimension \(2^{\lfloor D/2\rfloor }\). For every Majorana spinor \(\chi \) the Dirac adjoint equals the Majorana adjoint, \(\overline{\chi } := \chi ^\dagger \beta = \chi ^{\mathrm{T}} C\), and thus the hermitian structure \(\overline{\chi }\lambda \) on Dirac spinors equivalently reads for Majorana spinors

$$\begin{aligned} \overline{\chi }\lambda = \chi ^{\mathrm{T}}C\lambda = -\lambda ^{\mathrm{T}} C\chi , \end{aligned}$$
(7.3)

where in the last equality we have used that \(C^{\mathrm{T}} = -C\). We thus have a non-degenerate \(\mathbb R \)-bilinear antisymmetric map \(\chi ^{\mathrm{T}}C\lambda \) on the space of Majorana spinors. However, this map takes values in the purely imaginary numbers \(i\mathbb R \) and therefore should be rescaled by the imaginary unit in order to take values in the reals \(\mathbb R \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hack, TP., Schenkel, A. Linear bosonic and fermionic quantum gauge theories on curved spacetimes. Gen Relativ Gravit 45, 877–910 (2013). https://doi.org/10.1007/s10714-013-1508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1508-y

Keywords

Navigation