Skip to main content
Log in

Chaos and dynamics of spinning particles in Kerr spacetime

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study chaos dynamics of spinning particles in Kerr spacetime of rotating black holes use the Papapetrou equations by numerical integration. Because of spin, this system exists many chaos solutions, and exhibits some exceptional dynamic character. We investigate the relations between the orbits chaos and the spin magnitude S, pericenter, polar angle and Kerr rotation parameter a by means of a kind of brand new Fast Lyapulov Indicator (FLI) which is defined in general relativity. The classical definition of Lyapulov exponent (LE) perhaps fails in curve spacetime. And we emphasize that the Poincaré sections cannot be used to detect chaos for this case. Via calculations, some new interesting conclusions are found: though chaos is easier to emerge with bigger S, but not always depends on S monotonically; the Kerr parameter a has a contrary action on the chaos occurrence. Furthermore, the spin of particles can destroy the symmetry of the orbits about the equatorial plane. And for some special initial conditions, the orbits have equilibrium points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hobill, D., Burd, A., Coley, A. (eds.): Deterministic Chaos in General Relativity. Plenum Press, New York (1994)

  2. Lichtenberg A.J. and Lieberman M.A. (1983). Regular and Stochastic Motion. Springer, New York

    MATH  Google Scholar 

  3. Laudau L.D. and Lifshitz E.M. (1971). The Classical Theory of Fields. Pergamon Press, Oxford

    Google Scholar 

  4. Contopoulos G., Voglis N. and Efthymiopoulos C. (1999). Celest. Mech. Dyn. Astron 73: 1

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Imponente G. and Montani G. (2001). Phys. Rev. D 63: 103501

    Article  MathSciNet  ADS  Google Scholar 

  6. Bombelli, L., Lombarbo, F., Castagnino, M.: gr-qc/9707051

  7. Contopoulos G. and Papadaki H. (1993). Celest. Mech. Dyn. Astrom. 55: 47

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Vieira W.M. and Letelier P.S. (1997). Phys. Lett. A. 228: 22

    Article  ADS  Google Scholar 

  9. Vieira W.M. and Letelier P.S. (1999). Astrophys. J. 513: 383

    Article  ADS  Google Scholar 

  10. Letelier P.S. and Vieira W.M. (1997). Phys. Rev. D. 56: 12

    Article  MathSciNet  Google Scholar 

  11. Letelier P.S. and Vieira W.M. (1997). Class. Quantum. Grav. 14: 1249

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Wu X. and Zhang H. (2006). Astrophy. J 652: 1466

    Article  ADS  Google Scholar 

  13. Guéron E. and Letelier P.S. (2001). Astron. Astrophys. 368: 716

    Article  MATH  ADS  Google Scholar 

  14. Guéron E. and Letelier P.S. (2002). Phys. Rev. E. 66: 046611

    Article  MathSciNet  ADS  Google Scholar 

  15. Suzuki S. and Maeda K. (1997). Phys. Rev. D 55: 4848

    Article  ADS  Google Scholar 

  16. Suzuki S. and Maeda K. (2000). Phys. Rev. D 58: 02305

    MathSciNet  Google Scholar 

  17. Hartl M.D. (2003). Phys. Rev. D 67: 024005

    Article  MathSciNet  ADS  Google Scholar 

  18. Hartl M.D. (2004). Phys. Rev. D 67: 104023

    Article  MathSciNet  ADS  Google Scholar 

  19. Hartl M.D. and Buonanno A. (2005). Phys. Rev. D 71: 02407

    Article  Google Scholar 

  20. Levin J. (2000). Phys. Rev. Lett. 84: 3515

    Article  ADS  Google Scholar 

  21. Cornish N.J. (2001). Phys. Rev. D 64: 084011

    Article  ADS  Google Scholar 

  22. Schnittman J.D. and Rasio F.A. (2001). Phys. Rev. Lett. 87: 121101

    Article  ADS  Google Scholar 

  23. Cornish N.J. (2002). J. Levin Phys. Rev. Lett. 89: 179001

    Article  ADS  Google Scholar 

  24. Levin J. (2003). Phys. Rev. D 67: 044013

    Article  ADS  Google Scholar 

  25. Cornish N.J. (2003). J. Levin Phys. Rev. D 68: 024004

    Article  ADS  Google Scholar 

  26. Corinaldesi E. and Papapetrou A. (1951). Proc. Poy. Soc. A 209: 259

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Rasband S.N. (1973). Phys, Rev. Lett. 30: 111

    Article  ADS  Google Scholar 

  28. Tod K.P. and de Felice F. (1976). Nucovo, cim. B 34: 365

    Google Scholar 

  29. Hojman R. and Hojman S. (1977). Phys. Rev. D 15: 2724

    Article  ADS  Google Scholar 

  30. Abramowicz M.A. and Calvani M. (1979). Mon. Not. R. Astr. Soc. 189: 621

    ADS  Google Scholar 

  31. Wald R. (1974). Ann. Phys. 83: 548

    ADS  Google Scholar 

  32. Wald R. (1972). Phys. Rev. D 6: 406

    Article  ADS  Google Scholar 

  33. Mino Y., Shibata M. and Tanaka T. (1996). Phys. Rev. D 53: 622

    Article  MathSciNet  ADS  Google Scholar 

  34. Tanaka T., Mino Y., Sasaki M. and Shibata M. (1996). Phys. Rev. D 54: 3262

    Article  MathSciNet  ADS  Google Scholar 

  35. Kiuchi K. and Meada K. (2004). Phys. Rev. D 70: 064036

    Article  MathSciNet  ADS  Google Scholar 

  36. Suzuki S. and Maeda K. (1999). Phys. Rev. D 61: 024005

    Article  ADS  Google Scholar 

  37. Karas V. and Vokrouhlicky D. (1992). Gen. Rel. Grav. 24: 729

    Article  MathSciNet  ADS  Google Scholar 

  38. Wu X. and Huang T.-Y. (2003). Phys. Lett. A 313: 77

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Wu X., Huang T.-Y. and Zhang H. (2006). Phys. Rev. D 74: 083001

    Article  MathSciNet  ADS  Google Scholar 

  40. Papapetrou A. (1951). Proc. R. Soc. Lond. A 209: 248

    MATH  MathSciNet  ADS  Google Scholar 

  41. Dixon W.G. (1970). Proc. R. Soc. Lond. A 314: 499

    Article  MathSciNet  ADS  Google Scholar 

  42. Semerák O. (1999). Mon. Not. R. Astron. Soc. 308: 863

    Article  ADS  Google Scholar 

  43. Misner C.W., Thorne K.S. and Wheeler J.A. (1973). Gravitation. Freeman, San Francisco

    Google Scholar 

  44. Carter B. (1968). Phys. Rev 174: 5

    Google Scholar 

  45. Froeschlé C., Lega E. and Gonczi R. (1997). Celest. Mech. Dyn. Astron. 67: 41

    Article  MATH  ADS  Google Scholar 

  46. Froeschlé C. and Lega E. (2000). Celest. Mech. Dyn. Astron. 78: 167

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbiao Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, W. Chaos and dynamics of spinning particles in Kerr spacetime. Gen Relativ Gravit 40, 1831–1847 (2008). https://doi.org/10.1007/s10714-007-0598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0598-9

Keywords

Navigation