Skip to main content
Log in

Bulk viscosity driving the acceleration of the Universe

  • Letter
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The possibility that the present acceleration of the Universe is driven by a kind of viscous fluid is exploited. At background level this model is similar to the generalized Chaplygin gas model (GCGM). But, at the perturbative level, the viscous fluid exhibits interesting properties. In particular the oscillations in the power spectrum that plagues the GCGM are not present. Possible fundamental descriptions for this viscous dark energy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sahni, V.: Dark matter and dark energy. [astro-ph/0403324]

  2. Padmanabhan, T.: Dark Energy: The Cosmological Challenge of the Millennium. [astro-ph/0411044]

  3. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Sahni V., Starobinsky, A.: Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  5. Lazkoz, R., Nesseris, S., Perivolaropoulos, L.: Evidence for cosmological oscillations in the Gold SnIa dataset. [astro-ph/0503230]

  6. Bento, M.C., Bertolami, O., Santos, N.M.C., Sen, A.A.: Supernovae constraints on models of dark energy revisited. [astro-ph/0412638]

  7. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Carroll, S.M.: Living Rev. Rel. 4, 1 (2001)

    Google Scholar 

  9. Caldwell, R.R., Dave, R., Steinhardt, P.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  10. Brax, Ph., Martin, J.: Phys. Rev. D 61, 103502 (2000)

    Article  ADS  Google Scholar 

  11. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  12. Kamenshchik, A.Y., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001)

    Article  MATH  ADS  Google Scholar 

  13. Fabris, J.C., Gonçalves, S.V.B., de Souza, e P.E.: Gen. Rel. Grav. 34, 53 (2002)

    Article  MATH  Google Scholar 

  14. Bilic, N., Tupper, G.B., Viollier, R.D.: Phys. Lett. B 535, 17 (2002)

    Article  MATH  ADS  Google Scholar 

  15. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  16. Sandvik, H., Tegmark, M., Zaldarriaga, M., Waga, I.: Phys. Rev. D 69, 123524 (2004)

    Article  ADS  Google Scholar 

  17. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  18. Murphy, G.L.: Phys. Rev. D8, 4231 (1973)

    Article  ADS  Google Scholar 

  19. Pimentel, L.O.: Astrophys. Spac. Sci. 116, 395 (1985)

    ADS  MathSciNet  Google Scholar 

  20. Arbab, A.I.: Nonstandard cosmology with constant and variable gravitational and variable cosmological “constants” and bulk viscosity. PhD thesis [gr-qc/0105027]

  21. Chimento, L.P., Jakubi, A.S., Pavón, D.: Phys. Rev. 62, 063508 (2000)

    Google Scholar 

  22. Chimento, L.P., Jakubi, A.S., Pavón, D.: Phys. Rev. 67, 087302 (2003)

    Google Scholar 

  23. Zimdahl, W.: Phys. Rev. D 53, 5483 (1996)

    Article  ADS  Google Scholar 

  24. Zimdahl, W.: Understanding cosmological bulk viscosity. [astro-ph/9602128]

  25. Zimdahl, W.: Helv. Phys. Acta 69, 225 (1996)

    ADS  Google Scholar 

  26. Mak, M.K., Harko, T.: Int. J. Mod. Phys. D 12, 925 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sen, A.A., Sen, S., Sethi, S.: Phys. Rev. D 63, 107501 (2001)

    Article  ADS  Google Scholar 

  28. Cataldo, M., Cruz, N., Lepe, S.: Viscous dark energy and phantom evolution. [hep-th/0506153]

  29. Eckart, C.: Phys. Rev. 58, 919 (1940)

    Article  MATH  ADS  Google Scholar 

  30. Israel, W.: Ann. Phys. 100, 310 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. Israel, W., Stewart, J.M.: Ann. Phys. 118, 341 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  32. Colistete, R., Jr. Fabris, J.C.: Bayesian Analysis of the (Generalized) Chaplygin Gas and Cosmological Constant Models using the 157 gold SNe Ia Data. [astro-ph/0501519]

  33. Landau, L., Lifchitz, E.: Mécanique des fluides. Mir, Moscou (1971)

    MATH  Google Scholar 

  34. Spergel, D.N., Steinhardt, P.J.: Phys. Rev. Lett. 84, 3760 (1999)

    Article  ADS  Google Scholar 

  35. Barrow, J.D.: Phys. Lett. B 180, 335 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  36. Barrow, J.D.: Nucl. Phys. B 310, 743 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. Tegmark, M. et al.: Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  38. Padmanabhan, T.: Structure Formation in the Universe. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  39. Vilenkin, A., Shellard, E.P.S., Landshoff, P.V.: Cosmic String and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Fabris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabris, J., Gonçalves, S. & Ribeiro, R.d. Bulk viscosity driving the acceleration of the Universe. Gen Relativ Gravit 38, 495–506 (2006). https://doi.org/10.1007/s10714-006-0236-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-006-0236-y

Keywords

Navigation