Skip to main content

Advertisement

Log in

Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-Ecological Systems

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In this review paper, we explore latest results concerning a few key tipping elements of the Earth system in the ocean, cryosphere, and land realms, namely the Atlantic overturning circulation and the subpolar gyre system, the marine ecosystems, the permafrost, the Greenland and Antarctic ice sheets, and in terrestrial resource use systems. All these different tipping elements share common characteristics related to their nonlinear nature. They can also interact with each other leading to synergies that can lead to cascading tipping points. Even if the probability of each tipping event is low, they can happen relatively rapidly, involve multiple variables, and have large societal impacts. Therefore, adaptation measures and management in general should extend their focus beyond slow and continuous changes, into abrupt, nonlinear, possibly cascading, high impact phenomena. Remote sensing observations are found to be decisive in the understanding and determination of early warning signals of many tipping elements. Nevertheless, considerable research still remains to properly incorporate these data in the current generation of coupled Earth system models. This is a key prerequisite to correctly develop robust decadal prediction systems that may help to assess the risk of crossing thresholds potentially crucial for society. The prediction of tipping points remains difficult, notably due to stochastic resonance, i.e. the interaction between natural variability and anthropogenic forcing, asking for large ensembles of predictions to correctly assess the risks. Furthermore, evaluating the proximity to crucial thresholds using process-based understanding of each system remains a key aspect to be developed for an improved assessment of such risks. This paper finally proposes a few research avenues concerning the use of remote sensing data and the need for combining different sources of data, and having long and precise-enough time series of the key variables needed to monitor Earth system tipping elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Nat Acad Sci 113(42):11770–11775. https://doi.org/10.1073/pnas.1607171113

    Article  Google Scholar 

  • Ahmed M, Rahaman K, Kok A, Hassan Q (2017) Remote sensing-based quantification of the impact of flash flooding on the rice production: a case study over Northeastern Bangladesh. Sensors 17(10):2347. https://doi.org/10.3390/s17102347

    Article  Google Scholar 

  • Ali I, Cawkwell F, Dwyer E, Barrett B, Green S (2016) Satellite remote sensing of grasslands: from observation to management. J Plant Ecol 9:649–671. https://doi.org/10.1093/jpe/rtw005

    Article  Google Scholar 

  • Alvain S, Moulin C, Dandonneau Y, Bréon FM (2005) Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res Part I Oceanogr Res Pap 52(11):1989–2004. https://doi.org/10.1016/j.dsr.2005.06.015

    Article  Google Scholar 

  • Andersen T, Carstensen J, Hernández-García E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24:49–57. https://doi.org/10.1016/j.tree.2008.07.014

    Article  Google Scholar 

  • Angelopoulos M, Overduin PP, Miesner F, Grigoriev MN, Vasiliev AA (2020) Recent advances in the study of Arctic submarine permafrost. Permafr Periglac Process. https://doi.org/10.1002/ppp.2061

    Article  Google Scholar 

  • Bachelet D, Ferschweiler K, Sheehan T, Strittholt J (2016) Climate change effects on southern California deserts. J Arid Environ 127:17–29. https://doi.org/10.1016/j.jaridenv.2015.10.003

    Article  Google Scholar 

  • Bakker P, Schmittner A, Lenaerts JTM, Abe-Ouchi A, Bi D, van den Broeke MR, Chan WL, Hu A, Beadling RL, Marsland SJ, Mernild SH, Saenko OA, Swingedouw D, Sullivan A, Yin J (2016) Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophys Res Lett 43:12252–12260. https://doi.org/10.1002/2016gl070457

    Article  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58. https://doi.org/10.1038/nature11018

    Article  Google Scholar 

  • Bartsch A, Höfler A, Kroisleitner C, Trofaier AM (2016a) Land cover mapping in northern high latitude permafrost regions with satellite data: achievements and remaining challenges. Remote Sens 8:979. https://doi.org/10.3390/rs8120979

    Article  Google Scholar 

  • Bartsch A, Widhalm B, Kuhry P, Hugelius G, Palmtag J, Siewert MB (2016b) Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra? Biogeosciences 13:5453–5470. https://doi.org/10.5194/bg-13-5453-2016

    Article  Google Scholar 

  • Bartsch A, Leibman M, Strozzi T, Khomutov A, Widhalm B, Babkina E, Mullanurov D, Ermokhina K, Kroisleitner C, Bergstedt H (2019) Seasonal progression of ground displacement identified with satellite radar interferometry and the impact of unusually warm conditions on permafrost at the Yamal Peninsula in 2016. Remote Sens 11:1865. https://doi.org/10.3390/rs11161865

    Article  Google Scholar 

  • Bartsch A, Widhalm B, Leibman M, Ermokhina K, Kumpula T, Skarin A, Wilcox EJ, Jones BM, Frost GV, Höfler A, Pointner G (2020) Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data. Remote Sens Environ 237:111515. https://doi.org/10.1016/j.rse.2019.111515

    Article  Google Scholar 

  • Bathiany S, Dijkstra H, Crucifix M, Dakos V, Brovkin V, Williamson MS, Lenton TM, Scheffer M (2016) Beyond bifurcation: using complex models to understand and predict abrupt climate change. Dyn Stat Clim Syst. https://doi.org/10.1093/climsys/dzw004

    Article  Google Scholar 

  • Beaugrand G (2015) Theoretical basis for predicting climate-induced abrupt shifts in the oceans. Philos Trans R Soc Lond 370:20130264

    Article  Google Scholar 

  • Beaugrand G, Luczak C, Edwards M (2009) Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob Change Biol 15:1790–1803. https://doi.org/10.1111/j.1365-2486.2009.01848.x

    Article  Google Scholar 

  • Beaugrand G, Conversi A, Chiba S, Edwards M, Fonda-Umani S, Greene C, Mantua N, Otto SA, Reid PC, Stachura MM, Stemmann L, Sugisaki H (2015) Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos Trans R Soc B-Biol Sci 370:20130272. https://doi.org/10.1098/rstb.2013.0272

    Article  Google Scholar 

  • Beaugrand G, Conversi A, Atkinson A, Cloern J, Chiba S, Fonda-Umani S, Kirby RR, Greene CH, Goberville E, Otto SA (2019) Prediction of unprecedented biological shifts in the global ocean. Nat Clim Change 9:237

    Article  Google Scholar 

  • Beaulieu C, Chen J, Sarmiento JL (2012) Change-point analysis as a tool to detect abrupt climate variations. Philos Trans R Soc A Math Phys Eng Sci 370(1962):1228–1249. https://doi.org/10.1098/rsta.2011.0383

    Article  Google Scholar 

  • Behrenfeld MJ, Gaube P, Della Penna A, O’Malley RT, Burt WJ, Hu Y, Bontempi PS, Steinberg DK, Boss ES, Siegel DA, Hostetler CA, Tortell PD, Doney SC (2019) Global satellite-observed daily vertical migrations of ocean animals. Nature 576:257–261. https://doi.org/10.1038/s41586-019-1796-9

    Article  Google Scholar 

  • Belkin IM, Levitus S, Antonov J, Malmberg S-A (1998) “Great salinity anomalies” in the North Atlantic. Prog Oceanogr 41:1–68. https://doi.org/10.1016/S0079-6611(98)00015-9

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827

    Article  Google Scholar 

  • Bellwood DR, Pratchett MS, Morrison TH, Gurney GG, Hughes TP, Álvarez-Romero JG, Day JC, Grantham R, Grech A, Hoey AS (2019) Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol Conserv 236:604–615. https://doi.org/10.1016/j.biocon.2019.05.056

    Article  Google Scholar 

  • Benzi R (2010) Stochastic resonance: from climate to biology. Nonlinear Process Geophys 17:431–441. https://doi.org/10.5194/npg-17-431-2010

    Article  Google Scholar 

  • Biggs R, Blenckner T, Folke C, Gordon L, Norström A, Nyström M, Peterson G (2012) Regime shifts. In: Hastings A, Gross L (eds) Encyclopedia of theoretical ecology. University of California Press, Berkeley, pp 609–617

    Google Scholar 

  • Biggs R, Peterson GD, Rocha JC (2018) The regime shifts database : a framework for analyzing regime shifts in social-ecological systems. https://doi.org/10.5751/ES-10264-230309

  • Biskaborn BK, Lanckman J-P, Lantuit H, Elger K, Streletskiy DA, Cable WL, Romanovsky VE (2015) The new database of the Global Terrestrial Network for Permafrost (GTN-P) 7: 245–259. https://doi.org/10.5194/essd-7-245-2015

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaloye R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kröger T, Lambiel C, Lanckman J-P, Luo D, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel ABK, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M, Lantuit H (2019) Permafrost is warming at a global scale. Nat Commun. https://doi.org/10.1038/s41467-018-08240-4

    Article  Google Scholar 

  • Blenckner T, Llope M, Möllmann C, Voss R, Quaas MF, Casini M, Lindegren M, Folke C, Chr. Stenseth N (2015) Climate and fishing steer ecosystem regeneration to uncertain economic futures. Proc R Soc B Biol Sci 282:20142809

    Article  Google Scholar 

  • Boada J, Arthur R, Alonso D, Pagès JF, Pessarrodona A, Oliva S, Ceccherelli G, Piazzi L, Romero J, Alcoverro T (2017) Immanent conditions determine imminent collapses: nutrient regimes define the resilience of macroalgal communities. Proc R Soc B Biol Sci 284:20162814

    Article  Google Scholar 

  • Born A, Stocker TF, Sando AB (2016) Transport of salt and freshwater in the Atlantic Subpolar Gyre. Ocean Dyn 66:1051–1064. https://doi.org/10.1007/s10236-016-0970-y

    Article  Google Scholar 

  • Boulton CA, Allison LC, Lenton TM (2014) Early warning signals of Atlantic Meridional overturning circulation collapse in a fully coupled climate model. Nat Commun 5:5752. https://doi.org/10.1038/ncomms6752

    Article  Google Scholar 

  • Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Nat Acad Sci 111(17):6347–6352. https://doi.org/10.1073/pnas.1305499111

    Article  Google Scholar 

  • Bruno JF, Côté IM, Toth LT (2019) Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Annu Rev Mar Sci 11:307–334

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655

    Article  Google Scholar 

  • Burthe SJ, Henrys PA, Mackay EB, Spears BM, Campbell R, Carvalho L, Dudley B, Gunn IDM, Johns DG, Maberly SC (2016) Do early warning indicators consistently predict nonlinear change in long-term ecological data? J Appl Ecol 53:666–676

    Article  Google Scholar 

  • Bush A, Sollmann R, Wilting A, Bohmann K, Cole B, Balzter H, Martius C, Zlinszky A, Calvignac-Spencer S, Cobbold CA (2017) Connecting Earth observation to high-throughput biodiversity data. Nat Ecol Evol 1:0176

    Article  Google Scholar 

  • Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V (2018) Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556:191–196. https://doi.org/10.1038/s41586-018-0006-5

    Article  Google Scholar 

  • Cai YY, Lenton TM, Lontzek TS (2016) Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nat Clim Change 6:520–525. https://doi.org/10.1038/nclimate2964

    Article  Google Scholar 

  • Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecol Lett 9:311–318

    Article  Google Scholar 

  • Casini M, Hjelm J, Molinero J-C, Lövgren J, Cardinale M, Bartolino V, Belgrano A, Kornilovs G (2009) Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc Natl Acad Sci 106:197–202

    Article  Google Scholar 

  • Cazenave A (2006) How fast are the ice sheets melting? Science 314(5803):1250–1252. https://doi.org/10.1126/science.1133325

    Article  Google Scholar 

  • Charbit S, Paillard D, Ramstein G (2008) Amount of CO2 emissions irreversibly leading to the total melting of Greenland. Geophys Res Lett. https://doi.org/10.1029/2008GL033472

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661. https://doi.org/10.1038/326655a0

    Article  Google Scholar 

  • Cherlet M, Hutchinson C, Reynolds J, Hill J, Sommer S, von Maltitz G (eds) (2018) World atlas of desertification. Publication Office of the European Union. https://doi.org/10.2760/9205

  • Chlingaryan A, Sukkarieh S, Whelan B (2018) Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput Electron Agric 151:61–69. https://doi.org/10.1016/j.compag.2018.05.012

    Article  Google Scholar 

  • Choularton JC, Krishnamurthy PK (2019) How accurate is food security early warning? Evaluation of FEWS NET accuracy in Ethiopia. Food Security 11:333–344

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1137–1216. https://doi.org/10.1017/CBO9781107415324.026

  • Chuvilin E, Davletshina D, Ekimova V, Bukhanov B, Shakhova N, Semiletov I (2019) Role of warming in destabilization of intrapermafrost gas hydrates in the arctic shelf: experimental modeling. Geosciences 9:407. https://doi.org/10.3390/geosciences9100407

    Article  Google Scholar 

  • Claret M, Galbraith ED, Palter JB, Bianchi D, Fennel K, Gilbert D, Dunne JP (2018) Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic. Nat Clim Change 8:868–872. https://doi.org/10.1038/s41558-018-0263-1

    Article  Google Scholar 

  • Claussen M (1997) Modeling bio-geophysical feedback in the African and Indian monsoon region. Clim Dyn 13(4):247–257. https://doi.org/10.1007/s003820050164

    Article  Google Scholar 

  • Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46:RG4002. https://doi.org/10.1029/2006RG000204

    Article  Google Scholar 

  • Collins M, Sutherland M, Bouwer L, Cheong S-M, Frolicher T, Jacot Des Combes H, Mathew Koll R, Losada I, Mc Innes K, Ratter B, Rivera-Arriga E, Susanto RD, Swingedouw D, Tibig L (2019) IPCC special report on the ocean and cryosphere in a changing climate. Chapter 6: Extremes, abrupt changes and managing risks

  • Conversi A, Fonda-Umani S, Peluso T, Molinero JC, Santojanni A, Edwards M (2010) The Mediterranean Sea Regime shift at the end of the 1980s, and intriguing parallelisms with other European basins. PLoS ONE 5:e10633. https://doi.org/10.1371/journal.pone.0010633

    Article  Google Scholar 

  • Conversi A, Dakos V, Gardmark A, Ling S, Folke C, Mumby PJ, Greene C, Edwards M, Blenckner T, Casini M, Pershing A, Moellmann C (2015) A holistic view of marine regime shifts. Philos Trans R Soc B-Biol Sci 370:20130279. https://doi.org/10.1098/rstb.2013.0279

    Article  Google Scholar 

  • Dakos V, Carpenter SR, van Nes EH, Scheffer M (2015) Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos Trans R Soc B Biol Sci 370:20130263. https://doi.org/10.1098/rstb.2013.0263

    Article  Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahljensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjornsdottir AE, Jouzel J, Bond G (1993) evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220. https://doi.org/10.1038/364218a0

    Article  Google Scholar 

  • Dari B, Nair VD, Sharpley AN, Kleinman P, Franklin D, Harris WG (2018) Consistency of the threshold phosphorus saturation ratio across a wide geographic range of acid soils. Agrosyst Geosci Environ 1:180028. https://doi.org/10.2134/age2018.08.0028

    Article  Google Scholar 

  • Daskalov GM, Grishin AN, Rodionov S, Mihneva V (2007) Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc Natl Acad Sci 104:10518–10523

    Article  Google Scholar 

  • de Young B, Barange M, Beaugrand G, Harris R, Perry RI, Scheffer M, Werner F (2008) Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol Evol 23:402–409. https://doi.org/10.1016/j.tree.2008.03.008

    Article  Google Scholar 

  • DeConto RM, Pollard D (2016) Contribution of Antarctica to past and future sea-level rise. Nature 531:591–597. https://doi.org/10.1038/nature17145

    Article  Google Scholar 

  • Defrance D, Ramstein G, Charbit S, Vrac M, Famien AM, Sultan B, Swingedouw D, Dumas C, Gemenne F, Alvarez-Solas J, Vanderlinden JP (2017) Consequences of rapid ice sheet melting on the Sahelian population vulnerability. Proc Natl Acad Sci USA 114:6533–6538. https://doi.org/10.1073/pnas.1619358114

    Article  Google Scholar 

  • Demenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000) Abrupt onset and termination of the African humid period. Quat Sci Rev 19:347–361. https://doi.org/10.1016/s0277-3791(99)00081-5

    Article  Google Scholar 

  • Descamps S, Strøm H, Steen H (2013) Decline of an arctic top predator: synchrony in colony size fluctuations, risk of extinction and the subpolar gyre. Oecologia 173:1271–1282. https://doi.org/10.1007/s00442-013-2701-0

    Article  Google Scholar 

  • Deshayes J, Treguier AM, Barnier B, Lecointre A, Le Sommer J, Molines JM, Penduff T, Bourdalle-Badie R, Drillet Y, Garric G, Benshila R, Madec G, Biastoch A, Boning CW, Scheinert M, Coward AC, Hirschi JJM (2013) Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable. Geophys Res Lett 40:3069–3073. https://doi.org/10.1002/grl.50534

    Article  Google Scholar 

  • Donaldson L, Wilson RJ, Maclean IMD (2016) Old concepts, new challenges: adapting landscape-scale conservation to the twenty-first century. Biodivers Conserv. https://doi.org/10.1007/s10531-016-1257-9

    Article  Google Scholar 

  • Drechsler M, Surun C (2018) Land-use and species tipping points in a coupled ecological-economic model. Ecol Complex 36:86–91. https://doi.org/10.1016/j.ecocom.2018.06.004

    Article  Google Scholar 

  • Drijfhout S, Bathiany S, Beaulieu C, Brovkin V, Claussen M, Huntingford C, Scheffer M, Sgubin G, Swingedouw D (2015) Catalogue of abrupt shifts in intergovernmental panel on climate change climate models. Proc Natl Acad Sci USA 112:E5777–E5786. https://doi.org/10.1073/pnas.1511451112

    Article  Google Scholar 

  • Druon J-N, Hélaouët P, Beaugrand G, Fromentin J-M, Palialexis A, Hoepffner N (2019) Satellite-based indicator of zooplankton distribution for global monitoring. Sci Rep 9:4732

    Article  Google Scholar 

  • Duarte CM, Agustí S, Wassmann P, Arrieta JM, Alcaraz M, Coello A, Marbà N, Hendriks IE, Holding J, García-Zarandona I, Kritzberg E, Vaqué D (2012) Tipping elements in the arctic marine ecosystem. Ambio 41:44–55. https://doi.org/10.1007/s13280-011-0224-7

    Article  Google Scholar 

  • Duchez A, Courtois P, Harris E, Josey SA, Kanzow T, Marsh R, Smeed DA, Hirschi JJM (2016) Potential for seasonal prediction of Atlantic sea surface temperatures using the RAPID array at 26N. Clim Dyn 46:3351–3370. https://doi.org/10.1007/s00382-015-2918-1

    Article  Google Scholar 

  • Duffy PB, Brando P, Asner GP, Field CB (2015) Projections of future meteorological drought and wet periods in the Amazon. Proc Nat Acad Sci 112(43):13172–13177. https://doi.org/10.1073/pnas.1421010112

    Article  Google Scholar 

  • Dumedah G, Walker JP, Merlin O (2015) Root-zone soil moisture estimation from assimilation of downscaled Soil Moisture and Ocean Salinity data. Adv Water Resour 84:14–22. https://doi.org/10.1016/j.advwatres.2015.07.021

    Article  Google Scholar 

  • Dutton A, Carlson AE, Long AJ, Milne GA, Clark PU, DeConto R, Horton BP, Rahmstorf S, Raymo ME (2015) Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349:aaa4019. https://doi.org/10.1126/science.aaa4019

    Article  Google Scholar 

  • Eckert S, Husler H, Liniger H, Hodel E (2015) Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J Arid Environ 113:16–28

    Article  Google Scholar 

  • Elder CD, Thompson DR, Thorpe AK, Hanke P, Anthony KMW, Miller CE (2020) Airborne mapping reveals emergent power law of arctic methane emissions. Geophys Res Lett. https://doi.org/10.1029/2019GL085707

    Article  Google Scholar 

  • Ellison D, Ifejika Speranza C (2020) From blue to green water and back again: promoting tree, shrub and forest-based landscape resilience in the Sahel. Sci Total Environ 739:140002. https://doi.org/10.1016/j.scitotenv.2020.140002

    Article  Google Scholar 

  • Estella-Perez V, Mignot J, Guilyardi E, Swingedouw D, Reverdin G (2020) Advances in reconstructing the AMOC using sea surface observations of salinity. Clim Dyn. https://doi.org/10.1007/s00382-020-05304-4

    Article  Google Scholar 

  • European Union (2019) Monitoring agricultural ResourceS (MARS). https://ec.europa.eu/jrc/en/mars

  • Ezer T (2015) Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: the extreme decline in 2009–2010 and estimated variations for 1935–2012. Glob Planet Change 129:23–36. https://doi.org/10.1016/j.gloplacha.2015.03.002

    Article  Google Scholar 

  • Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. In: Advances in agronomy. Academic Press, pp 97–185. https://doi.org/10.1016/S0065-2113(05)88004-6

  • Falkowski P (2012) Ocean science: the power of plankton. Nature 483:S17–S20. https://doi.org/10.1038/483s17a

    Article  Google Scholar 

  • FAO (2019) Global Information and Early Warning System (GIEWS)

  • Faunt CC, Sneed M, Traum J, Brandt JT (2016) Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol J 24:675–684. https://doi.org/10.1007/s10040-015-1339-x

    Article  Google Scholar 

  • Favier L, Durand G, Cornford SL, Gudmundsson GH, Gagliardini O, Gillet-Chaulet F, Zwinger T, Payne AJ, Le Brocq AM (2014) Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat Clim Change 4:117–121. https://doi.org/10.1038/nclimate2094

    Article  Google Scholar 

  • Fernández-Giménez ME, Venable NH, Angerer J, Fassnacht SR, Reid RS, Jamyansharav K (2017) Exploring linked ecological and cultural tipping points in Mongolia. Anthropocene 17:46–69. https://doi.org/10.1016/j.ancene.2017.01.003

    Article  Google Scholar 

  • FEWS NET (2018a) Agroclimatology: analyzing the effects of weather and climate on food security. http://fews.net/sites/default/files/White%20Paper%20-%20Agroclimatology%20-%20Jan212015.pdf

  • FEWS NET (2018b) Building rainfall assumptions for scenario development. https://fews.net/sites/default/files/documents/reports/Guidance_Document_Rainfall_2018.pdf

  • Fisher JB, Melton F, Middleton E, Hain C, Anderson M, Allen R, McCabe MF, Hook S, Baldocchi D, Townsend PA, Kilic A, Tu K, Miralles DD, Perret J, Lagouarde J-P, Waliser D, Purdy AJ, French A, Schimel D, Famiglietti JS, Stephens G, Wood EF (2017) The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour Res 53(4):2618–2626. https://doi.org/10.1002/2016WR020175

    Article  Google Scholar 

  • Frajka-Williams E (2015) Estimating the Atlantic overturning at 26°N using satellite altimetry and cable measurements: MOC FROM ALTIMETRY. Geophys Res Lett 42:3458–3464. https://doi.org/10.1002/2015GL063220

    Article  Google Scholar 

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393. https://doi.org/10.5194/tc-7-375-2013

    Article  Google Scholar 

  • Friedland KD, Mouw CB, Asch RG, Ferreira ASA, Henson S, Hyde KJW, Morse RE, Thomas AC, Brady DC (2018) Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales. Glob Ecol Biogeogr 27:551–569. https://doi.org/10.1111/geb.12717

    Article  Google Scholar 

  • Galaasen EV, Ninnemann US, Irval N, Kleiven HF, Rosenthal Y, Kissel C, Hodell DA (2014) Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period. Science 343:1129–1132. https://doi.org/10.1126/science.1248667

    Article  Google Scholar 

  • Gastineau G, L’Heveder B, Codron F, Frankignoul C (2016) Mechanisms determining the winter atmospheric response to the atlantic overturning circulation. J Clim 29:3767–3785. https://doi.org/10.1175/jcli-d-15-0326.1

    Article  Google Scholar 

  • Goldstein A, Turner WR, Spawn SA, Anderson-Teixeira KJ, Cook-Patton S, Fargione J, Gibbs HK, Griscom B, Hewson JH, Howard JF, Ledezma JC, Page S, Koh LP, Rockström J, Sanderman J, Hole DG (2020) Protecting irrecoverable carbon in Earth’s ecosystems. Nat Clim Change 10:287–295. https://doi.org/10.1038/s41558-020-0738-8

    Article  Google Scholar 

  • Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118:6704–6716. https://doi.org/10.1002/2013JC009067

    Article  Google Scholar 

  • Good P, Bamber J, Halladay K, Harper AB, Jackson LC, Kay G, Kruijt B, Lowe JA, Phillips OL, Ridley J, Srokosz M, Turley C, Williamson P (2018) Recent progress in understanding climate thresholds: ice sheets, the Atlantic meridional overturning circulation, tropical forests and responses to ocean acidification. Prog Phys Geogr 42:24–60. https://doi.org/10.1177/0309133317751843

    Article  Google Scholar 

  • Gudmundsson GH, Krug J, Durand G, Favier L, Gagliardini O (2012) The stability of grounding lines on retrograde slopes. Cryosphere 6:1497–1505. https://doi.org/10.5194/tc-6-1497-2012

    Article  Google Scholar 

  • Hanna E, Mernild SH, Cappelen J, Steffen K (2012) Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ Res Lett 7:045404. https://doi.org/10.1088/1748-9326/7/4/045404

    Article  Google Scholar 

  • Hatun H, Lohmann K, Matei D, Jungclaus JH, Pacariz S, Bersch M, Gislason A, Olafsson J, Reid PC (2016) An inflated subpolar gyre blows life toward the northeastern Atlantic. Prog Oceanogr 147:49–66. https://doi.org/10.1016/j.pocean.2016.07.009

    Article  Google Scholar 

  • Hays G, Richardson A, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344. https://doi.org/10.1016/j.tree.2005.03.004

    Article  Google Scholar 

  • Helderop E, Grubesic TH (2019) Hurricane storm surge in Volusia County, Florida: evidence of a tipping point for infrastructure damage. Disasters 43:157–180. https://doi.org/10.1111/disa.12296

    Article  Google Scholar 

  • Henson SA, Sarmiento JL, Dunne JP, Bopp L, Lima I, Doney SC, John J, Beaulieu C (2010) Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7:621–640. https://doi.org/10.5194/bg-7-621-2010

    Article  Google Scholar 

  • Henson S, Cole H, Beaulieu C, Yool A (2013) The impact of global warming on seasonality of ocean primary production. Biogeosciences 10:4357–4369

    Article  Google Scholar 

  • Heuze C (2017) North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Sci 13:609–622. https://doi.org/10.5194/os-13-609-2017

    Article  Google Scholar 

  • Hewitt JE, Thrush SF (2019) Monitoring for tipping points in the marine environment. J Environ Manag 234:131–137

    Article  Google Scholar 

  • Hickman JE, Tully KL, Groffman PM, Diru W, Palm CA (2015) A potential tipping point in tropical agriculture: avoiding rapid increases in nitrous oxide fluxes from agricultural intensification in Kenya. J Geophys Res Biogeosci 120:938–951. https://doi.org/10.1002/2015JG002913

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi KL, Engelbrecht F, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren R, Zhou G, Halim SA, Achlatis M, Allen R, Berry P, Boyer C, Brilli L, Byers E, Cheung W, Craig M, Ellis N, Evans J, Fischer H, Fraedrich K, Fuss S, Ganase A, Gattuso J-P, Bolaños TG, Hanasaki N, Hayes K, Hirsch A, Jones C, Jung T, Kanninen M, Krinner G, Lawrence D, Ley D, Liverman D, Mahowald N, Meissner KJ, Millar R, Mintenbeck K, Mix AC, Notz D, Nurse L, Okem A, Olsson L, Oppenheimer M, Paz S, Petersen J, Petzold J, Preuschmann S, Rahman MF, Scheuffele H, Schleussner C-F, Séférian R, Sillmann J, Singh C, Slade R, Stephenson K, Stephenson T, Tebboth M, Tschakert P, Vautard R, Wehner M, Weyer NM, Whyte F, Yohe G, Zhang X, Zougmoré RB, Marengo JA, Pereira J, Sherstyukov B (2018) Impacts of 1.5 °C global warming on natural and human systems. In: Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [IPCC report]

  • Hoelzmann P, Jolly D, Harrison SP, Laarif F, Bonnefille R, Pachur H-J (1998) Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochem Cycles 12:35–51. https://doi.org/10.1029/97gb02733

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Holt J, Schrum C, Cannaby H, Daewel U, Allen I, Artioli Y, Bopp L, Butenschon M, Fach BA, Harle J, Pushpadas D, Salihoglu B, Wakelin S (2016) Potential impacts of climate change on the primary production of regional seas: a comparative analysis of five European seas. Prog Oceanogr 140:91–115. https://doi.org/10.1016/j.pocean.2015.11.004

    Article  Google Scholar 

  • Horion S, Prishchepov AV, Verbesselt J, de Beurs K, Tagesson T, Fensholt R (2016) Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Glob Change Biol 22:2801–2817. https://doi.org/10.1111/gcb.13267

    Article  Google Scholar 

  • Hossain MS, Speranza CI (2020) Challenges and opportunities for operationalizing the safe and just operating space concept at regional scale. Int J Sustain Dev World Ecol 27:40–54. https://doi.org/10.1080/13504509.2019.1683645

    Article  Google Scholar 

  • Hostetler CA, Behrenfeld MJ, Hu Y, Hair JW, Schulien JA (2018) Spaceborne Lidar in the study of marine systems. Annu Rev Mar Sci 10:121–147. https://doi.org/10.1146/annurev-marine-121916-063335

    Article  Google Scholar 

  • Hugelius G, Bockheim JG, Camill P, Elberling B, Grosse G, Harden JW, Johnson K, Jorgenson T, Koven CD, Kuhry P, Michaelson G, Mishra U, Palmtag J, Ping C-L, O’Donnell J, Schirrmeister L, Schuur EaG, Sheng Y, Smith LC, Strauss J, Yu Z (2013) A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst Sci Data. https://doi.org/10.5194/essd-5-393-2013

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Sci-AAAS-Wkly Pap Ed 265:1547–1551

    Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    Article  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373. https://doi.org/10.1038/nature21707

    Article  Google Scholar 

  • Hunsicker ME, Kappel CV, Selkoe KA, Halpern BS, Scarborough C, Mease L, Amrhein A (2016) Characterizing driver–response relationships in marine pelagic ecosystems for improved ocean management. Ecol Appl 26:651–663

    Article  Google Scholar 

  • IPCC (2019) Summary for policymakers. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC special report on the ocean and cryosphere in a changing climate [IPCC report]. https://www.ipcc.ch/srocc/

  • Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Bui EN, Wilford J (2018) Soil salinity assessment through satellite thermography for different irrigated and rainfed crops. Int J Appl Earth Obs Geoinf 68:230–237. https://doi.org/10.1016/j.jag.2018.02.004

    Article  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  Google Scholar 

  • Jackson LC, Kahana R, Graham T, Ringer MA, Woollings T, Mecking JV, Wood RA (2015) Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim Dyn 45(11–12):3299–3316. https://doi.org/10.1007/s00382-015-2540-2

    Article  Google Scholar 

  • Jamet C, Ibrahim A, Ahmad Z, Angelini F, Babin M, Behrenfeld MJ, Boss E, Cairns B, Churnside J, Chowdhary J, Davis AB, Dionisi D, Duforêt-Gaurier L, Franz B, Frouin R, Gao M, Gray D, Hasekamp O, He X, Hostetler C, Kalashnikova OV, Knobelspiesse K, Lacour L, Loisel H, Martins V, Rehm E, Remer L, Sanhaj I, Stamnes K, Stamnes S, Victori S, Werdell J, Zhai P-W (2019) Going beyond standard ocean color observations: lidar and polarimetry. Front Mar Sci 6:251. https://doi.org/10.3389/fmars.2019.00251

    Article  Google Scholar 

  • Johnson CJ (2013) Identifying ecological thresholds for regulating human activity: effective conservation or wishful thinking? Biol Conserv 168:57–65

    Article  Google Scholar 

  • Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432:608–610. https://doi.org/10.1038/nature03130

    Article  Google Scholar 

  • Joughin I, Smith BE, Medley B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344:735–738. https://doi.org/10.1126/science.1249055

    Article  Google Scholar 

  • Karspeck AR, Stammer D, Kohl A, Danabasoglu G, Balmaseda M, Smith DM, Fujii Y, Zhang S, Giese B, Tsujino H, Rosati A (2017) Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim Dyn 49:957–982. https://doi.org/10.1007/s00382-015-2787-7

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. https://doi.org/10.1038/nature06921

    Article  Google Scholar 

  • Khishigbayar J, Fernandez-Gimenez ME, Angerer JP, Reid RS, Chantsallkham J, Baasandorj Y, Zumberelmaa D (2015) Mongolian rangelands at a tipping point? Biomass and cover are stable but composition shifts and richness declines after 20 years of grazing and increasing temperatures. J Arid Environ 115:100–112

    Article  Google Scholar 

  • Kim A-H, Yum SS, Lee H, Chang DY, Shim S (2018) Polar cooling effect due to increase of phytoplankton and dimethyl-sulfide emission. Atmosphere 9:384. https://doi.org/10.3390/atmos9100384

    Article  Google Scholar 

  • Kirby RR, Beaugrand G (2009) Trophic amplification of climate warming. Proc R Soc B-Biol Sci 276:4095–4103. https://doi.org/10.1098/rspb.2009.1320

    Article  Google Scholar 

  • Kleidon A, Heimann M (2000) Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Clim Dyn 16(2):183–199. https://doi.org/10.1007/s003820050012

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett. https://doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  • Knoblauch C, Beer C, Liebner S, Grigoriev MN, Pfeiffer E-M (2018) Methane production as key to the greenhouse gas budget of thawing permafrost. Nat Clim Change 8(4):309–312. https://doi.org/10.1038/s41558-018-0095-z

    Article  Google Scholar 

  • Kokhanovsky A, Box JE, Vandecrux B, Mankoff KD, Lamare M, Smirnov A, Kern M (2020) The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens 12:234. https://doi.org/10.3390/rs12020234

    Article  Google Scholar 

  • Könönen M, Jauhiainen J, Straková P, Heinonsalo J, Laiho R, Kusin K, Limin S, Vasander H (2018) Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest. Soil Biol Biochem 123:229–241. https://doi.org/10.1016/j.soilbio.2018.04.028

    Article  Google Scholar 

  • Krishnamurthy L, Krishnamurthy V (2016) Decadal and interannual variability of the Indian Ocean SST. Clim Dyn 46:57–70. https://doi.org/10.1007/s00382-015-2568-3

    Article  Google Scholar 

  • Landerer FW, Wiese DN, Bentel K, Boening C, Watkins MM (2015) North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys Res Lett 42:8114–8121. https://doi.org/10.1002/2015gl065730

    Article  Google Scholar 

  • Lara MJ, Nitze I, Grosse G, Martin P, Mcguire AD (2018) Reduced arctic tundra productivity linked with landform and climate change interactions. Sci Rep. https://doi.org/10.1038/s41598-018-20692-8

    Article  Google Scholar 

  • Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Étrillard C, Levain A, Moatar F, Pannard A, Souchu P, Lefebvre A, Pinay G (2019) Eutrophication: a new wine in an old bottle? Sci Total Environ 651:1–11. https://doi.org/10.1016/j.scitotenv.2018.09.139

    Article  Google Scholar 

  • Lemoine D, Traeger C (2014) Watch your step: optimal policy in a tipping climate. Am Econ J Econ Policy 6:137–166. https://doi.org/10.1257/pol.6.1.137

    Article  Google Scholar 

  • Lenton TM (2011) Early warning of climate tipping points. Nat Clim Change 1:201–209. https://doi.org/10.1038/nclimate1143

    Article  Google Scholar 

  • Lenton TM (2012) Arctic climate tipping points. Ambio 41:10–22. https://doi.org/10.1007/s13280-011-0221-x

    Article  Google Scholar 

  • Lenton TM, Ciscar J-C (2013) Integrating tipping points into climate impact assessments. Clim Change 117(3):585–597. https://doi.org/10.1007/s10584-012-0572-8

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793. https://doi.org/10.1073/pnas.0705414105

    Article  Google Scholar 

  • Lenton TM, Rockstrom J, Gaffney O, Rahmstorf S, Richardson K, Steffen W, Schnellnhuber H (2019) Climate tipping points—too risky to bet against. Nature 575:592–595. https://doi.org/10.1038/d41586-019-03595-0

    Article  Google Scholar 

  • Lindegren M, Dakos V, Gröger JP, Gårdmark A, Kornilovs G, Otto SA, Möllmann C (2012) Early detection of ecosystem regime shifts: a multiple method evaluation for management application. PLoS ONE 7:e38410

    Article  Google Scholar 

  • Ling SD, Scheibling RE, Rassweiler A, Johnson CR, Shears N, Connell SD, Salomon AK, Norderhaug KM, Perez-Matus A, Hernandez JC, Clemente S, Blamey LK, Hereu B, Ballesteros E, Sala E, Garrabou J, Cebrian E, Zabala M, Fujita D, Johnson LE (2015) Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos Trans R Soc B-Biol Sci 370:20130269

    Article  Google Scholar 

  • Liu W, Xie SP, Liu ZY, Zhu J (2017) Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci Adv. https://doi.org/10.1126/sciadv.1601666

    Article  Google Scholar 

  • Liu L, Zhang X, Xu W, Liu X, Li Y, Wei J, Gao M, Bi J, Lu X, Wang Z, Wu X (2020) Challenges for global sustainable nitrogen management in agricultural systems. J Agric Food Chem 68(11):3354–3361. https://doi.org/10.1021/acs.jafc.0c00273

    Article  Google Scholar 

  • Llope M, Daskalov GM, Rouyer TA, Mihneva V, Chan K, Grishin AN, Stenseth NC (2011) Overfishing of top predators eroded the resilience of the Black Sea system regardless of the climate and anthropogenic conditions. Glob Change Biol 17:1251–1265

    Article  Google Scholar 

  • Lontzek TS, Cai Y, Judd KL, Lenton TM (2015) Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nat Clim Change 5:441–444. https://doi.org/10.1038/nclimate2570

    Article  Google Scholar 

  • Lovejoy TE, Nobre C (2018) Amazon tipping point. Sci Adv 4:eaat2340. https://doi.org/10.1126/sciadv.aat2340

    Article  Google Scholar 

  • Lozier MS, Li F, Bacon S, Bahr F, Bower AS, Cunningham SA, de Jong MF, de Steur L, deYoung B, Fischer J, Gary SF, Greenan BJW, Holliday NP, Houk A, Houpert L, Inall ME, Johns WE, Johnson HL, Johnson C, Karstensen J, Koman G, Le Bras IA, Lin X, Mackay N, Marshall DP, Mercier H, Oltmanns M, Pickart RS, Ramsey AL, Rayner D, Straneo F, Thierry V, Torres DJ, Williams RG, Wilson C, Yang J, Yashayaev I, Zhao J (2019) A sea change in our view of overturning in the subpolar North Atlantic. Science 363:516–521. https://doi.org/10.1126/science.aau6592

    Article  Google Scholar 

  • Lu C, Zhang J, Cao P, Hatfield JL (2019) Are we getting better in using nitrogen?: variations in nitrogen use efficiency of two cereal crops across the United States. Earths Future 7:939–952. https://doi.org/10.1029/2019EF001155

    Article  Google Scholar 

  • Luke CM, Cox PM (2011) Soil carbon and climate change: from the Jenkinson effect to the compost-bomb instability 62:5–12. https://doi.org/10.1111/j.1365-2389.2010.01312.x

    Article  Google Scholar 

  • MacKenzie BR, Payne MR, Boje J, Høyer JL, Siegstad H (2014) A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob Change Biol 20:2484–2491. https://doi.org/10.1111/gcb.12597

    Article  Google Scholar 

  • Mackinson S, Daskalov G, Heymans JJ, Neira S, Arancibia H, Zetina-Rejon M, Jiang H, Cheng HQ, Coll M, Arreguin-Sanchez F, Keeble K, Shannon L (2009) Which forcing factors fit? Using ecosystem models to investigate the relative influence of fishing and changes in primary productivity on the dynamics of marine ecosystems. Ecol Model 220:2972–2987. https://doi.org/10.1016/j.ecolmodel.2008.10.021

    Article  Google Scholar 

  • Magurran AE, Dornelas M, Moyes F, Gotelli NJ, McGill B (2015) Rapid biotic homogenization of marine fish assemblages. Nat Commun 6:8405

    Article  Google Scholar 

  • Mariotti V, Bopp L, Tagliabue A, Kageyama M, Swingedouw D (2012) Marine productivity response to Heinrich events: a model-data comparison. Clim Past 8:1581–1598. https://doi.org/10.5194/cp-8-1581-2012

    Article  Google Scholar 

  • Masson-Delmotte V, Zhai P, Portner H, Roberts D, Skea J, Shukla P, Pirani A, Moufouma-Okia W, Péan C, Pidcock S, Connors S, Matthews J, Chen Y, Zhou X, Gomis M, Lonnoy E, Maycock M, Tignor M, Waterfiled T (2018) Summary for policymakers. In: Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, p 32

  • McCarthy GD, Smeed DA, Johns WE, Frajka-Williams E, Moat BI, Rayner D, Baringer MO, Meinen CS, Collins J, Bryden HL (2015) Measuring the Atlantic Meridional overturning circulation at 26 degrees N. Prog Oceanogr 130:91–111. https://doi.org/10.1016/j.pocean.2014.10.006

    Article  Google Scholar 

  • McCrackin ML, Jones HP, Jones PC, Moreno-Mateos D (2017) Recovery of lakes and coastal marine ecosystems from eutrophication: a global meta-analysis. Limnol Oceanogr 62:507–518. https://doi.org/10.1002/lno.10441

    Article  Google Scholar 

  • Mecking JV, Drijfhout SS, Jackson LC, Graham T (2016) Stable AMOC off state in an eddy-permitting coupled climate model. Clim Dyn 47:2455–2470. https://doi.org/10.1007/s00382-016-2975-0

    Article  Google Scholar 

  • Meinen CS, Speich S, Piola AR, Ansorge I, Campos E, Kersalé M, Terre T, Chidichimo MP, Lamont T, Sato OT, Perez RC, Valla D, van den Berg M, Le Hénaff M, Dong S, Garzoli SL (2018) Meridional overturning circulation transport variability at 34.5°S during 2009–2017: baroclinic and barotropic flows and the dueling influence of the boundaries. Geophys Res Lett 45:4180–4188. https://doi.org/10.1029/2018GL077408

    Article  Google Scholar 

  • Melet A, Teatini P, Le Cozannet G, Jamet C, Conversi A, Benveniste J, Almar R (2020) Earth observations for monitoring marine coastal hazards and their drivers. Surv Geophys. https://doi.org/10.1007/s10712-020-09594-5

    Article  Google Scholar 

  • Mercier H, Lherminier P, Sarafanov A, Gaillard F, Daniault N, Desbruyeres D, Falina A, Ferron B, Gourcuff C, Huck T, Thierry V (2015) Variability of the meridional overturning circulation at the Greenland-Portugal OVIDE section from 1993 to 2010. Prog Oceanogr 132:250–261. https://doi.org/10.1016/j.pocean.2013.11.001

    Article  Google Scholar 

  • Miesner AK, Payne MR (2018) Oceanographic variability shapes the spawning distribution of blue whiting (Micromesistius poutassou). Fish Oceanogr 27:623–638. https://doi.org/10.1111/fog.12382

    Article  Google Scholar 

  • Mignot J, Swingedouw D, Deshayes J, Marti O, Talandier C, Seferian R, Lengaigne M, Madec G (2013) On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: a mean state comparison. Ocean Model 72:167–184. https://doi.org/10.1016/j.ocemod.2013.09.001

    Article  Google Scholar 

  • Milkoreit M, Hodbod J, Baggio J, Benessaiah K, Calderon Contreras R, Donges JF, Mathias J-D, Rocha JC, Schoon M, Werners S (2018) Defining tipping points for social-ecological systems scholarship: an interdisciplinary literature review. Environ Res Lett. https://doi.org/10.1088/1748-9326/aaaa75

    Article  Google Scholar 

  • Möllmann C, Diekmann R (2012) Marine ecosystem regime shifts induced by climate and overfishing: a review for the Northern Hemisphere. Adv Ecol Res 47:303

    Article  Google Scholar 

  • Möllmann C, Folke C, Edwards M, Conversi A (2015) Marine regime shifts around the globe: theory, drivers and impacts. Philos Trans 370:20130260

    Article  Google Scholar 

  • Monerie P, Robson J, Dong B, Hodson DLR, Klingaman NP (2019) Effect of the atlantic multidecadal variability on the global monsoon. Geophys Res Lett 46:1765–1775. https://doi.org/10.1029/2018GL080903

    Article  Google Scholar 

  • Morlighem M, Williams CN, Rignot E, An L, Arndt JE, Bamber JL, Catania G, Chauché N, Dowdeswell JA, Dorschel B, Fenty I, Hogan K, Howat I, Hubbard A, Jakobsson M, Jordan TM, Kjeldsen KK, Millan R, Mayer L, Mouginot J, Noël BPY, O’Cofaigh C, Palmer S, Rysgaard S, Seroussi H, Siegert MJ, Slabon P, Straneo F, van den Broeke MR, Weinrebe W, Wood M, Zinglersen KB (2017) BedMachine v3: complete bed topography and ocean bathymetry mapping of greenland from multibeam echo sounding combined with mass conservation. Geophys Res Lett 44:11051–11061. https://doi.org/10.1002/2017GL074954

    Article  Google Scholar 

  • Mouginot J, Rignot E, Scheuchl B (2014) Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys Res Lett 41:1576–1584. https://doi.org/10.1002/2013GL059069

    Article  Google Scholar 

  • Mouw CB, Hardman-Mountford NJ, Alvain S, Bracher A, Brewin RJW, Bricaud A, Ciotti AM, Devred E, Fujiwara A, Hirata T, Hirawake T, Kostadinov TS, Roy S, Uitz J (2017) A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global ocean. Fron Mar Sci. https://doi.org/10.3389/fmars.2017.00041

    Article  Google Scholar 

  • Nepstad DC, Stickler CM, Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc B Biol Sci 363:1737–1746. https://doi.org/10.1098/rstb.2007.0036

    Article  Google Scholar 

  • Nobre CA, Sellers P, Shukla J (1991) Amazonina deforestation and regional climate change. J Clim 4:957–988

    Article  Google Scholar 

  • Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS, Cardoso M (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc Natl Acad Sci 113:10759–10768. https://doi.org/10.1073/pnas.1605516113

    Article  Google Scholar 

  • Obu J, Westermann S, Bartsch A, Berdnikov N, Christiansen HH, Dashtseren A, Delaloye R, Elberling B, Etzelmüller B, Kholodov A, Khomutov A, Kääb A, Leibman MO, Lewkowicz AG, Panda SK, Romanovsky V, Way RG, Westergaard-Nielsen A, Wu T, Yamkhin J, Zou D (2019) Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci Rev 193:299–316. https://doi.org/10.1016/j.earscirev.2019.04.023

    Article  Google Scholar 

  • Oh Y, Zhuang Q, Liu L, Welp LR, Lau MCY, Onstott TC, Medvigy D, Bruhwiler L, Dlugokencky EJ, Hugelius G, D’Imperio L, Elberling B (2020) Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat Clim Change 10:317–321. https://doi.org/10.1038/s41558-020-0734-z

    Article  Google Scholar 

  • Osman MB, Das SB, Trusel LD, Evans MJ, Fischer H, Grieman MM, Kipfstuhl S, Mcconnell JR, Saltzman ES (2019) Industrial-era decline in subarctic Atlantic productivity. Nature. https://doi.org/10.1038/s41586-019-1181-8

    Article  Google Scholar 

  • Overduin PP, von Deimling TS, Miesner F, Grigoriev MN, Ruppel C, Vasiliev A, Lantuit H, Juhls B, Westermann S (2019) Submarine permafrost map in the arctic modeled using 1-D transient heat flux (SuPerMAP). J Geophys Res Oceans 124:3490–3507. https://doi.org/10.1029/2018JC014675

    Article  Google Scholar 

  • Papworth DJ, Marini S, Conversi A (2016) A novel, unbiased analysis approach for investigating population dynamics: a case study on Calanus finmarchicus and its decline in the north sea. PLoS ONE 11:e0158230

    Article  Google Scholar 

  • Pattyn F, Favier L, Sun S, Durand G (2017) Progress in numerical modeling of antarctic ice-sheet dynamics. Curr Clim Change Rep 3:174–184. https://doi.org/10.1007/s40641-017-0069-7

    Article  Google Scholar 

  • Pattyn F, Ritz C, Hanna E, Asay-Davis X, DeConto R, Durand G, Favier L, Fettweis X, Goelzer H, Golledge NR, Kuipers Munneke P, Lenaerts JTM, Nowicki S, Payne AJ, Robinson A, Seroussi H, Trusel LD, van den Broeke M (2018) The Greenland and Antarctic ice sheets under 1.5°C global warming. Nat Clim Change 8:1053–1061. https://doi.org/10.1038/s41558-018-0305-8

    Article  Google Scholar 

  • Poincaré H (1885) L’Équilibre d’une masse fluide animée d’un mouvement de rotation. Acta Math 7:259–380

    Article  Google Scholar 

  • Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett. https://doi.org/10.1029/2007gl031745

    Article  Google Scholar 

  • Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F, Stehfest E, Bodirsky BL, Dietrich JP, Doelmann JC, Gusti M, Hasegawa T, Kyle P, Obersteiner M, Tabeau A, Takahashi K, Valin H, Waldhoff S, Weindl I, Wise M, Kriegler E, Lotze-Campen H, Fricko O, Riahi K, van Vuuren DP (2017) Land-use futures in the shared socio-economic pathways. Glob Environ Change 42:331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002

    Article  Google Scholar 

  • Prince S, Von Maltitz G, Zhang F, Byrne K, Driscoll C, Eshel G, Kust G, Martínez-Garza C, Metzger JP, Midgley G, Moreno-Mateos D, Sghaier M, Thwin S, Bleeker A, Brown ME, Cheng L, Dales K, Ellicot EA, Wilson Fernandes G, Geissen V, Halme P, Harris J, Izaurralde RC, Jandl R, Jia G, Li G, Lindsay R, Molinario G, Neffati M, Palmer M, Parrotta J, Pierzynski G, Plieninger T, Podwojewski P, Dourado Ranieri B, Sankaran M, Scholes R, Tully K, Viglizzo EF, Wang F, Xiao N, Ying Q, Zhao C, Norbu C, Reynolds J (2018) Status and trends of land degradation and restoration and associated changes in biodiversity and ecosystem functions. IPBES, Bonn

    Google Scholar 

  • Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975. https://doi.org/10.1038/nature08471

    Article  Google Scholar 

  • Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, Van Den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505. https://doi.org/10.1038/nature10968

    Article  Google Scholar 

  • Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811. https://doi.org/10.1007/s003820050144

    Article  Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214

    Article  Google Scholar 

  • Ramankutty N, Coomes OT (2016) Land-use regime shifts: an analytical framework and agenda for future land-use research. Ecol Soc. https://doi.org/10.5751/ES-08370-210201

    Article  Google Scholar 

  • Renssen H, Goosse H, Fichefet T, Campin J-M (2001) The 8.2 kyr BP event simulated by a global atmosphere-sea-ice-ocean model. Geophys Res Lett 28:1567–1570. https://doi.org/10.1029/2000gl012602

    Article  Google Scholar 

  • Rignot EJ (1998) Fast recession of a west antarctic glacier. Science 281:549–551. https://doi.org/10.1126/science.281.5376.549

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the greenland ice sheet. Science 311:986–990. https://doi.org/10.1126/science.1121381

    Article  Google Scholar 

  • Ritz C, Edwards TL, Durand G, Payne AJ, Peyaud V, Hindmarsh RCA (2015) Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528:115–118. https://doi.org/10.1038/nature16147

    Article  Google Scholar 

  • Robinson A, Calov R, Ganopolski A (2012) Multistability and critical thresholds of the Greenland ice sheet. Nat Clim Change 2:429–432. https://doi.org/10.1038/nclimate1449

    Article  Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475. https://doi.org/10.1038/461472a

    Article  Google Scholar 

  • Rogelj J, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, Handa C, Kheshgi H, Kobayashi S, Kriegler E, Mundaca L, Seferian R, Vilarino MV, Calvin K, Edelenbosch O, Emmerling J, Fuss S, Gasser T, Gillet N, He C, Hertwich E, Höglund Isaksson L, Huppmann D, Luderer G, Markandya A, McCollum D, Millar R, Meinshausen M, Popp A, Pereira J, Purohit P, Riahi K, Ribes A, Saunders H, Schadel C, Smith C, Smith P, Trutnevyte E, Xiu Y, Zickfeld K, Zhou W (2018) Chapter 2: Mitigation pathways compatible with 1.5 °C in the context of sustainable development. In: Global warming of 1.5 °C an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Intergovernmental panel on climate change

  • Salazar LF, Nobre CA (2010) Climate change and thresholds of biome shifts in Amazonia. Geophys Res Lett. https://doi.org/10.1029/2010GL043538

    Article  Google Scholar 

  • Sampaio G, Nobre C, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett. https://doi.org/10.1029/2007gl030612

    Article  Google Scholar 

  • Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett. https://doi.org/10.1029/2004GL020670

    Article  Google Scholar 

  • Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environ Res Lett 9:085003. https://doi.org/10.1088/1748-9326/9/8/085003

    Article  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656. https://doi.org/10.1016/j.tree.2003.09.002

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59. https://doi.org/10.1038/nature08227

    Article  Google Scholar 

  • Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM (2016) Reducing phosphorus to Curb Lake eutrophication is a success. Environ Sci Technol 50:8923–8929. https://doi.org/10.1021/acs.est.6b02204

    Article  Google Scholar 

  • Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res Earth Surf. https://doi.org/10.1029/2006JF000664

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179. https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  • Séférian R, Rocher M, Guivarch C, Colin J (2018) Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity. Environ Res Lett 13:054011. https://doi.org/10.1088/1748-9326/aabcd7

    Article  Google Scholar 

  • Sellers PJ, Schimel DS, Moore B, Liu J, Eldering A (2018) Observing carbon cycle–climate feedbacks from space. Proc Natl Acad Sci 115:7860–7868. https://doi.org/10.1073/pnas.1716613115

    Article  Google Scholar 

  • Send U, Lankhorst M, Kanzow T (2011) Observation of decadal change in the Atlantic meridional overturning circulation using 10 years of continuous transport data. Geophys Res Lett. https://doi.org/10.1029/2011GL049801

    Article  Google Scholar 

  • Sgubin G, Swingedouw D, Drijfhout S, Hagemann S, Robertson E (2015) Multimodel analysis on the response of the AMOC under an increase of radiative forcing and its symmetrical reversal. Clim Dyn 45:1429–1450. https://doi.org/10.1007/s00382-014-2391-2

    Article  Google Scholar 

  • Sgubin G, Swingedouw D, Drijfhout S, Mary Y, Bennabi A (2017) Abrupt cooling over the North Atlantic in modern climate models. Nat Commun. https://doi.org/10.1038/ncomms14375

    Article  Google Scholar 

  • Sgubin G, Swingedouw D, García de Cortázar-Atauri I, Ollat N, van Leeuwen C (2019) The impact of possible decadal-scale cold waves on viticulture over Europe in a context of global warming. Agronomy 9:397. https://doi.org/10.3390/agronomy9070397

    Article  Google Scholar 

  • Sguotti C, Cormon X (2018) Regime shifts–a global challenge for the sustainable use of our marine resources. In: YOUMARES 8–oceans across boundaries: learning from each other. Springer, Berlin, pp 155–166

  • Shahid SA, Zaman M, Heng L (2018) Introduction to soil salinity, sodicity and diagnostics techniques. In: Zaman M, Shahid SA, Heng L (eds) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, pp 1–42. https://doi.org/10.1007/978-3-319-96190-3_1

  • Shakhova N, Semiletov I, Gustafsson O, Sergienko V, Lobkovsky L, Dudarev O, Tumskoy V, Grigoriev M, Mazurov A, Salyuk A, Ananiev R, Koshurnikov A, Kosmach D, Charkin A, Dmitrevsky N, Karnaukh V, Gunar A, Meluzov A, Chernykh D (2017) Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat Commun 8(1):15872. https://doi.org/10.1038/ncomms15872

    Article  Google Scholar 

  • Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sorensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189. https://doi.org/10.1126/science.1228102

    Article  Google Scholar 

  • Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, Masson-Delmotte V, Popp T, Rasmussen SO, Röthlisberger R, Ruth U, Stauffer B, Siggaard-Andersen M-L, Sveinbjörnsdóttir ÁE, Svensson A, White JWC (2008) High-resolution greenland ice core data show abrupt climate change happens in few years. Science 321:680–684. https://doi.org/10.1126/science.1157707

    Article  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science. https://doi.org/10.1126/science.1259855

    Article  Google Scholar 

  • Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, Summerhayes CP, Barnosky AD, Cornell SE, Crucifix M, Donges JF, Fetzer I, Lade SJ, Scheffer M, Winkelmann R, Schellnhuber HJ (2018) Trajectories of the Earth System in the Anthropocene. Proc Natl Acad Sci 115:8252–8259. https://doi.org/10.1073/pnas.1810141115

    Article  Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13(2):224–230. https://doi.org/10.3402/tellusa.v13i2.9491

    Article  Google Scholar 

  • Sun Y, Frankenberg C, Wood JD, Schimel DS, Jung M, Guanter L, Drewry DT, Verma M, Porcar-Castell A, Griffis TJ, Gu L, Magney TS, Köhler P, Evans B, Yuen K (2017) OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science. https://doi.org/10.1126/science.aam5747

    Article  Google Scholar 

  • Sutton RT (2018) ESD Ideas: a simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks. Earth Syst Dyn 9:1155–1158. https://doi.org/10.5194/esd-9-1155-2018

    Article  Google Scholar 

  • Swingedouw D, Fichefet T, Huybrechts P, Goosse H, Driesschaert E, Loutre MF (2008) Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophys Res Lett. https://doi.org/10.1029/2008gl034410

    Article  Google Scholar 

  • Swingedouw D, Mignot J, Labetoulle S, Guilyardi E, Madec G (2013) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn 40:2381–2399. https://doi.org/10.1007/s00382-012-1516-8

    Article  Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26. https://doi.org/10.3763/ghgmm.2010.0007

    Article  Google Scholar 

  • Taubert F, Fischer R, Groeneveld J, Lehmann S, Müller MS, Rödig E, Wiegand T, Huth A (2018) Global patterns of tropical forest fragmentation. Nature 554:519–522. https://doi.org/10.1038/nature25508

    Article  Google Scholar 

  • The IMBIE team (2018) Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558:219–222. https://doi.org/10.1038/s41586-018-0179-y

    Article  Google Scholar 

  • Thellmann K, Cotter M, Baumgartner S, Treydte A, Cadisch G, Asch F (2018) Tipping points in the supply of ecosystem services of a mountainous watershed in Southeast Asia. Sustainability 10:2418. https://doi.org/10.3390/su10072418

    Article  Google Scholar 

  • Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, Argus DF (2017) GRACE groundwater drought index: evaluation of California central valley groundwater drought. Remote Sens Environ 198:384–392. https://doi.org/10.1016/j.rse.2017.06.026

    Article  Google Scholar 

  • Trofaier AM, Westermann S, Bartsch A (2017) Progress in space-borne studies of permafrost for climate science: towards a multi-ECV approach. Remote Sens Environ 203:55–70. https://doi.org/10.1016/j.rse.2017.05.021

    Article  Google Scholar 

  • Trusel LD, Das SB, Osman MB, Evans MJ, Smith BE, Fettweis X, McConnell JR, Noël BPY, van den Broeke MR (2018) Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564:104–108. https://doi.org/10.1038/s41586-018-0752-4

    Article  Google Scholar 

  • United Nations (2015) The Paris Agreement. https://unfccc…—Google Scholar [WWW Document], n.d. https://scholar.google.fr/scholar?hl=fr&as_sdt=0%2C5&q=United+Nations+%282015%29+The+Paris+Agreement.+https%3A%2F%2Funfccc.int%2Ffiles%2Fessential_background%2Fconvention%2Fapplication%2Fpdf%2Fenglish_paris_agreement.pdf.+Accessed+10.06.2020.&btnG=. Accessed 22 June 2020

  • van den Broeke M, Box J, Fettweis X, Hanna E, Noël B, Tedesco M, van As D, van de Berg WJ, van Kampenhout L (2017) Greenland ice sheet surface mass loss: recent developments in observation and modeling. Curr Clim Change Rep 3:345–356. https://doi.org/10.1007/s40641-017-0084-8

    Article  Google Scholar 

  • Vasco DW, Farr TG, Jeanne P, Doughty C, Nico P (2019) Satellite-based monitoring of groundwater depletion in California’s Central Valley. Sci Rep 9(1):16053. https://doi.org/10.1038/s41598-019-52371-7

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754–1756. https://doi.org/10.1126/science.1123785

    Article  Google Scholar 

  • Verbesselt J, Umlauf N, Hirota M, Holmgren M, Van Nes EH, Herold M, Zeileis A, Scheffer M (2016) Remotely sensed resilience of tropical forests. Nat Clim Change 6(11):1028–1031. https://doi.org/10.1038/nclimate3108

    Article  Google Scholar 

  • Watts JD, Kimball JS, Bartsch A, McDonald KC (2014) Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ Res Lett 9:075001. https://doi.org/10.1088/1748-9326/9/7/075001

    Article  Google Scholar 

  • Weaver AJ, Sedláček J, Eby M, Alexander K, Crespin E, Fichefet T, Philippon-Berthier G, Joos F, Kawamiya M, Matsumoto K, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zickfeld K (2012) Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys Res Lett. https://doi.org/10.1029/2012GL053763

    Article  Google Scholar 

  • Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J Glaciol 13:3–11. https://doi.org/10.3189/S0022143000023327

    Article  Google Scholar 

  • Weijer W, Cheng W, Drijfhout SS, Fedorov AV, Hu A, Jackson LC, Liu W, McDonagh EL, Mecking JV, Zhang J (2019) Stability of the Atlantic meridional overturning circulation: a review and synthesis. J Geophys Res Oceans 124(8):5336–5375. https://doi.org/10.1029/2019JC015083

    Article  Google Scholar 

  • Wellens T, Shatokhin V, Buchleitner A (2004) Stochastic resonance. Rep Prog Phys 67:45–105. https://doi.org/10.1088/0034-4885/67/1/R02

    Article  Google Scholar 

  • Wilcox EJ, Keim D, de Jong T, Walker B, Sonnentag O, Sniderhan AE, Mann P, Marsh P (2019) Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arctic Sci 5(4):202–217. https://doi.org/10.1139/as-2018-0028

    Article  Google Scholar 

  • Wu B, Meng J, Li Q, Yan N, Du X, Zhang M (2014) Remote sensing-based global crop monitoring: experiences with China’s CropWatch system. Int J Digit Earth 7:113–137. https://doi.org/10.1080/17538947.2013.821185

    Article  Google Scholar 

  • Xu XB, Rhines PB, Chassignet EP (2016) Temperature-salinity structure of the north Atlantic circulation and associated heat and freshwater transports. J Clim 29(21):7723–7742. https://doi.org/10.1175/jcli-d-15-0798.1

    Article  Google Scholar 

  • Yashayaev I, Loder JW (2017) Further intensification of deep convection in the Labrador Sea in 2016. Geophys Res Lett 44:1429–1438. https://doi.org/10.1002/2016gl071668

    Article  Google Scholar 

  • Yumashev D, Hope C, Schaefer K, Riemann-Campe K, Iglesias-Suarez F, Jafarov E, Burke EJ, Young PJ, Elshorbany Y, Whiteman G (2019) Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat Commun. https://doi.org/10.1038/s41467-019-09863-x

    Article  Google Scholar 

  • Yurganov L, Muller-Karger F, Leifer I (2019) Methane increase over the Barents and Kara seas after the autumn pycnocline breakdown: satellite observations. Adv Polar Sci 30:382–390

    Google Scholar 

  • Zdruli P, Lal R, Cherlet M, Kapur S (2017) New World Atlas of desertification and issues of carbon sequestration, organic carbon stocks, nutrient depletion and implications for food security. In: Erşahin S, Kapur S, Akça E, Namlı A, Erdoğan HE (eds), Carbon management, technologies, and trends in mediterranean ecosystems, the anthropocene: Politik—Economics—Society—Science. Springer, Cham, pp 13–25. https://doi.org/10.1007/978-3-319-45035-3_2

  • Zeng N, Dickinson RE, Zeng X (1996) Climatic impact of amazon deforestation: a mechanistic model study. J Clim 9:859–883. https://doi.org/10.1175/1520-0442(1996)009%3c0859:CIOADM%3e2.0.CO;2

    Article  Google Scholar 

  • Zeng J, Zhu ZY, Zhang JL, Ouyang TP, Qiu SF, Zou Y, Zeng T (2012) Social vulnerability assessment of natural hazards on county-scale using high spatial resolution satellite imagery: a case study in the Luogang district of Guangzhou, South China. Environ Earth Sci 65(1):173–182. https://doi.org/10.1007/s12665-011-1079-8

    Article  Google Scholar 

  • Zhang M, Zhang Y, Qiao F, Deng J, Wang G (2017) Shifting trends in bimodal phytoplankton blooms in the North Pacific and North Atlantic Oceans from Space with the holo-hilbert spectral analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 10:57–64. https://doi.org/10.1109/JSTARS.2016.2625813

    Article  Google Scholar 

  • Zhou Y, Dong J, Xiao X, Xiao T, Yang Z, Zhao G, Zou Z, Qin Y (2017) Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors. Water 9(4):256. https://doi.org/10.3390/w9040256

    Article  Google Scholar 

Download references

Acknowledgements

We thank Teodolina Lopez and Anny Cazenave from ISSI who organized the Workshop leading to this review paper. We acknowledge very constructive and inspiring comments from one anonymous reviewer that clearly helped to improve the manuscript clarity. DS is supported by Blue-Action (European Union’s Horizon 2020 research and innovation program, Grant Number: 727852) and EUCP (European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 776613) projects. CIS’ inputs contribute to the Programme on Ecosystem Change and Society (www.pecs-science.org) and the Global Land Programme (www.glp.earth). AB benefited from Nunataryuk project (H2020 Research and Innovation Programme under Grant Agreement No. 773421) as well as ESA Climate Change Initiative project on Permafrost (4000123681/18/I-NB). GD was supported by the TiPACCs project (European Union’s Horizon 2020 research and innovation programme, Grant Number: 820575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Swingedouw.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swingedouw, D., Ifejika Speranza, C., Bartsch, A. et al. Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-Ecological Systems. Surv Geophys 41, 1237–1284 (2020). https://doi.org/10.1007/s10712-020-09604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-020-09604-6

Keywords

Navigation