Skip to main content

Advertisement

Log in

Integrated Geophysical Investigations at the Greek Kamarina Site (Southern Sicily, Italy)

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Kamarina, located in southern Sicily (Italy), was an important Greek colony since its foundation in the sixth century BC. Archaeological excavations, carried out since the twentieth century, uncovered only limited portions of the site so far. Despite the importance of the Greek colony, the presence of remarkable buildings that archaeologists expected to bring to light has not found fully correspondence in the archaeological excavations. Consequently, the integrated geophysical prospection carried out in the study area is aimed to support and address the future archaeological investigations. After the photographic and thermographic survey obtained by an unmanned aerial vehicle, we performed a systematic survey through ground magnetic and GPR methods over an area of 6200 m2. The acquisition procedures have been optimized in order to get the best results combining high resolution and elevated speed of acquisition. The results derived from the three geophysical techniques have been conveniently combined by means of a cluster analysis, allowing us to clearly identify a series of buried archaeological features. Because of their geometrical characteristics, often in good agreement with the spatial arrangement of the archaeological remains at the surface, these buried archaeological features can be interpreted as roads, walls, or buildings foundations in which the various construction phases of the city can be clearly recognized. The integrated approach has proven to be essential for a robust interpretation of the archaeogeophysical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agisoft (2013) Agisoft website <http://www.agisoft.ru>. St. Petersburg, 2015

  • Baranov V (1957) A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies. Geophysics 22(2):359–382

    Article  Google Scholar 

  • Barbarito L (1999) L’analisi di Settore: Metodologia E Applicazioni. Franco Angeli, Milano

    Google Scholar 

  • Bellerby TJ, Noel M, Branigan K (1990) A thermal method for archaeological prospection: preliminary investigations. Archaeometry 32(2):191–203

    Article  Google Scholar 

  • Bottari C, Albano M, Capizzi P, D’Alessandro A, Doumaz F, Martorana R, Moro M, Saroli M (2018) Recognition of earthquake-induced damage in the Abakainon necropolis (NE Sicily): results from geomorphological, geophysical and numerical analyses. Pure appl Geophys 175:133–148. https://doi.org/10.1007/s00024-017-1653-4

    Article  Google Scholar 

  • Campana S (2017) Drones in archaeology. State-of-the-art and future perspectives. Archaeol Prospect 24:275–296. https://doi.org/10.1002/arp.1569

    Article  Google Scholar 

  • Campbell WH (2003) Introduction to geomagnetic fields. Cambridge University Press, Cambridge. ISBN: 0-521-82206-8

    Book  Google Scholar 

  • Capizzi P, Martorana R (2014) Integration of constrained electrical and seismic tomographies to study the landslide affecting the Cathedral of Agrigento. J Geophys Eng 11:045009. https://doi.org/10.1088/1742-2132/11/4/045009

    Article  Google Scholar 

  • Capizzi P, Cosentino PL, Fiandaca G, Martorana R, Messina P, Vassallo S (2007) Geophysical investigations at the Himera archaeological site, northern Sicily. Near Surf Geophys 5(6):417–426. ISSN 1569–4445. https://doi.org/10.3997/1873-0604.2007024

  • Capizzi P, Martorana R, Messina P, Cosentino PL (2012) Geophysical and geotechnical investigations to support the restoration project of the Roman “Villa del Casale”, Piazza Armerina, Sicily, Italy. Near Surf Geophys 10(2):145–160. ISSN: 1569–4445. https://doi.org/10.3997/1873-0604.2011038

  • Capizzi P, Martorana R, Stassi G, D’Alessandro A. Luzio D (2014) Centroid-based cluster analysis of HVSR data for seismic microzonation. In: Near surface geoscience 2014—20th European meeting of environmental and engineering geophysics, pp 351–355. https://doi.org/10.3997/2214-4609.201413734

  • Capizzi P, Martorana R, Carollo A, Vattano M (2017) Cluster analysis for cavity detection using seismic refraction and electrical resistivity tomography. In: 23rd European meeting of environmental and engineering geophysics 2017. https://doi.org/10.3997/2214-4609.201702123

  • Casana J, Kantner J, Wiewel A, Cothren J (2014) Archaeological aerial thermography: a case study at the Chaco-era Blue J community, New Mexico. J Archaeol Sci 45:207–219

    Article  Google Scholar 

  • Casana J, Wiewel A, Cool A, Hill AC, Fisher KD, Laugier EJ (2017) Archaeological aerial thermography in theory and practice. Adv Archaeol Pract 5(4):310–327

    Article  Google Scholar 

  • Cella F, Fedi M (2015) High-resolution geophysical 3D imaging for archaeology by magnetic and EM data: the case of the iron age settlement of Torre Galli, Southern Italy. Surv Geophys 36(6):831–850

    Article  Google Scholar 

  • Chianese D, D’Emilio MG, Di Salvia S, Lapenna V, Ragosta M, Rizzo E (2004) Magnetic mapping, Ground Penetrating Radar surveys and magnetic susceptibility measurements for the study of the archaeological site of Serra di Vaglio (Southern Italy). J Archaeol Sci 31(5):633–643

    Article  Google Scholar 

  • Ciminale MA, Loddo M (2001) Aspects of magnetic data processing. Archaeol Prospect 8(4):239–246

    Article  Google Scholar 

  • Conyers LB (2013) Ground-penetrating radar for archaeology. Wiley, Hoboken. https://doi.org/10.1002/9781118949993

    Book  Google Scholar 

  • Cool AC (2015) Aerial thermography in archaeological prospection: applications & processing, Doctoral dissertation, University of Arkansas, p 1157. http://scholarworks.uark.edu/etd/1157. Accessed 22 May 2018

  • Cordano F (2013) Kamarina. In: Bagnall RS, Brodersen K, Champion CB, Erskine A, Huebner SR (eds) The encyclopedia of ancient history. Blackwell Publishing Ltd, Hoboken, pp 3686–3687. https://doi.org/10.1002/9781444338386.wbeah04159

    Chapter  Google Scholar 

  • Di Stefano G (1994) Distribuzione e tipologia degli insediamenti di età repubblicana ed imperiale sull’altopiano Ibleo. Publications de l’École française de Rome 196(1):237–242

    Google Scholar 

  • Di Stefano G (2000) I recenti scavi di Camarina. In: Un ponte fra l’Italia e la Grecia. Atti del Simposio in onore d i Antonino Di Vita, Ragusa 13–15 Febbraio 1999, Padova, pp 195–212

  • Di Stefano G (2006) Aspetti urbanistici e topografici per la storia di Camarina. In: Pelagatti P, Di Stefano G, De Lachenal L (eds) Camarina 2600 anni dopo la fondazione, Nuovi studi sulla città e sul territorio. Atti del convegno internazionale (Ragusa 7 Dicembre 2002—1–9 Aprile 2003), Roma, pp 157–176

  • Dojack L (2012) Ground penetrating radar theory, data collection, processing, and interpretation: a guide for archaeologists. Doctoral dissertation, University of British Columbia. https://doi.org/10.14288/1.0086065

  • Ekinci YL, Balkaya Ç, Şeren A, Kaya MA, Lightfoot CS (2014) Geomagnetic and geoelectrical prospection for buried archaeological remains on the Upper City of Amorium, a Byzantine city in midwestern Turkey. J Geophys Eng 11(1):015012

    Article  Google Scholar 

  • Fabbris L (1983) Analisi Esplorativa di Dati Multidimensionali. Cleup, Padova

    Google Scholar 

  • Fedi M, Cella F, Florio G, Manna ML, Paoletti V (2017) Geomagnetometry for archaeology. In: Masini N, Soldovieri F (eds) Sensing the past, vol 16. Geotechnologies and the environment. Springer, Cham

    Chapter  Google Scholar 

  • Fernández-Hernandez J, González-Aguilera D, Rodrìguez-Gonzálvez P, Mancera-Taboada J (2015) Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective. Low-cost tool for archaeological applications. Archaeometry 57(1):128–145

    Article  Google Scholar 

  • Fonstad MA, Dietrich JT, Courville BC, Jensen JL, Carbonneau PE (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Process Landforms 38:421–430

    Article  Google Scholar 

  • Gaffney C (2008) Detecting trends in the prediction of the buried past: a review of geophysical techniques in archaeology. Archaeometry 50(2):313–336

    Article  Google Scholar 

  • Garrison E (2016) Techniques in archaeological geology. In: Wagner GA, Miller CE, Schutkowski H (eds) Natural science in archaeology. Springer, Berlin Heidelberg, pp 115–143. ISSN: 1613-9712. https://doi.org/10.1007/978-3-319-30232-4_5

    Google Scholar 

  • Godio A, Piro S (2005) Integrated data processing for archeological magnetic surveys. Lead Edge 24(11):1138–1144

    Article  Google Scholar 

  • Goodman D, Nishimura Y, Rogers JO (1995) GPR time-slices in archaeological prospection. Archaeol Prospect 2:85–89

    Google Scholar 

  • Hinze WJ, Von Frese RR, Saad AH (2013) Gravity and magnetic exploration: principles, practices, and applications. Cambridge University Press, Cambridge. ISBN: 978-0-521-87101-3

    Book  Google Scholar 

  • Javernick L, Brasington J, Caruso B (2014) Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology 213:166–182

    Article  Google Scholar 

  • Khouas A, Hamoudi M, Khaldaoui F, Mihoubi H, Hadji YR (2017) Subsurface geophysics applied to archaeological investigation of Thabudeos Roman fortress (Biskra, Algeria). Arab J Geosci 10(23):522. https://doi.org/10.1007/s12517-017-3260-1

    Article  Google Scholar 

  • Kvamme KL (2006) Magnetometry: nature’s gift to archaeology. In: Johnson J (ed) Remote sensing in archaeology: an explicitly North American perspective. University of Alabama Press, Tuscaloosa, pp 205–223

    Google Scholar 

  • Lentini F, Carbone S (2014) Geologia della Sicilia-Geology of Sicily. Memorie Descr Carta Geologica d’Italia 95:7–414

    Google Scholar 

  • Leucci G, Masini N, Rizzo E, Capozzoli L, De Martino G, De Giorgi L, Marzo C, Roubis D, Sogliani F (2015) Integrated archaeogeophysical approach for the study of a medieval monastic settlement in Basilicata. Open Archaeol 1(1):236–246. https://doi.org/10.1515/opar-2015-0014

    Article  Google Scholar 

  • Love JJ (2008) Magnetic monitoring of Earth and space. Phys Today 61(2):31

    Article  Google Scholar 

  • Micheletti N, Chandler JH, Lane SN (2015) Structure from motion (SfM) photogrammetry. In: Clarke LE, Nield JM (eds) Geomorphological techniques, Chap. 2, Sec. 2.2. British Society for Geomorphology, London. ISSN: 2047-0371

  • Nabighian MN (1984) Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49(6):780–786

    Article  Google Scholar 

  • Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Appl Geomat 6(1):1–15. https://doi.org/10.1007/s12518-013-0120-x

    Article  Google Scholar 

  • Nuzzo L, Leucci G, Negri S (2009) GPR, ERT and magnetic investigations inside the Martyrium of St Philip, Hierapolis, Turkey. Archaeol Prospect 16(3):177–192

    Article  Google Scholar 

  • Pelagatti P (1976) Sul parco archeologico di Camarina. Le fasi edilizie dell’abitato greco. BA 61:124–126

    Google Scholar 

  • Pelagatti P (1985) Ricerche nel quartiere orientale di Naxos e nell’agorà di Camarina. Kokalos 30–31(2):679–680

    Google Scholar 

  • Pelagatti P (2000) Camarina nel VI e V secolo. Problemi di cronologia alla luce della documentazione archeologica. In: Un ponte fra l’Italia e la Grecia. Atti del Simposio in onored i Antonino Di Vita, Ragusa 13–15 Febbraio 1999, Padova, pp 173–190

  • Pelagatti P, Di Stefano G, De Lachenal L (2006) Camarina 2600 anni dopo la fondazione. Nuovi studi sulla città e sul territorio. Edited by Istituto Poligrafico e Zecca dello Stato, Italy, ISBN: 9788824010207

  • Périsset MC, Tabbagh A (1981) Interpretation of thermal prospection on bare soils. Archaeometry 23(2):169–187

    Article  Google Scholar 

  • Piga C, Piroddi L, Pompianu E, Ranieri G, Stocco S, Trogu A (2014) Integrated geophysical and aerial sensing methods for archaeology: a case history in the Punic Site of Villamar (Sardinia, Italy). Remote Sens 6(11):10986–11012

    Article  Google Scholar 

  • Pisani M, Pelagatti P, Di Stefano G (2008) Camarina: le terrecotte figurate e la ceramica da una fornace di V e IV secolo aC, vol 164. L’Erma di Bretschneider, Rome

    Google Scholar 

  • Poirier N, Hautefeuille F, Calastrenc C (2013) Low altitude thermal survey by means of an automated unmanned aerial vehicle for the detection of archaeological buried structures. Archaeol Prospect 20(4):303–307

    Article  Google Scholar 

  • Ranieri G, Godio A, Loddo F, Stocco S, Casas A, Capizzi P, Messina P, Orfila M, Cau MA, Chávez ME (2016) Geophysical prospection of the Roman city of Pollentia, Alcúdia (Mallorca, Balearic Islands, Spain). J Appl Geophys 134:125–135

    Article  Google Scholar 

  • Rizzo E, Chianese D, Lapenna V (2005) Magnetic, GPR and geoelectrical measurements for studying the archaeological site of ‘Masseria Nigro’ (Viggiano, Southern Italy). Near Surf Geophys 3(1):13–19

    Google Scholar 

  • Roest WR, Verhoef J, Pilkington M (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1):116–125

    Article  Google Scholar 

  • Sala R, Garcia E, Tamba R (2012) Archaeological geophysics-from basics to new perspectives. In: Ollich-Castanyer I (ed) Archaeology, new approaches in theory and techniques. InTech, Rijeka. ISBN: 978-953-51-0590-9. https://doi.org/10.5772/2412

    Google Scholar 

  • Sambuelli L, Socco LV, Brecciaroli L (1999) Acquisition and processing of electric, magnetic and GPR data on a Roman site (Victimulae, Salussola, Biella). J Appl Geophys 41:189–204

    Article  Google Scholar 

  • Scollar I, Tabbagh A, Hesse A, Herzog I (1990) Archaeological prospecting and remote sensing. Cambridge University Press, Cambridge

    Google Scholar 

  • Smekalova TN, Voss O, Smekalov SL (2008) Magnetic surveying in archaeology: more than 10 years of using the Overhauser GSM-19 gradiometer. Wormianum, Aarhus. ISBN: 978-87-89531-29-8

    Google Scholar 

  • Sorour MM, Saleh MM, Mahmoud RA (1990) Thermal conductivity and diffusivity of soil. Int Commun Heat Mass Transf 17(2):189–199

    Article  Google Scholar 

  • Tabbagh A (1977) Sur la détermination du moment de mesure favorable et l’interprétation des résultats en prospection thermique archéologique. Annales de Géophysique 33:243–254

    Google Scholar 

  • Thomas H (2017) Some like it hot: the impact of next generation FLIR systems thermal cameras on archaeological thermography. Archaeol Prospect 2017:1–7. https://doi.org/10.1002/arp.1588

    Article  Google Scholar 

  • Vermeulen F, Pincé P, Weekers L, Dapper M (2017) Geoarchaeological study of abandoned Roman urban and suburban contexts from central Adriatic Italy. Geoarchaeology 33:85–99. https://doi.org/10.1002/gea.21642

    Article  Google Scholar 

  • Welc F, Mieszkowski R, Vrkljan GL, Konestra A (2017) An attempt to integration of different geophysical methods (magnetic, GPR and ERT); a case study from the late Roman settlement on the Island of Rab in Croatia. Studia Quaternaria 34(1):47–59

    Article  Google Scholar 

Download references

Acknowledgements

We thank Roberto D’Anna (Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti, Roma) for his help during fieldworks. We also thank Rita Deiana for the editorial handling of the manuscript and two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Scudero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scudero, S., Martorana, R., Capizzi, P. et al. Integrated Geophysical Investigations at the Greek Kamarina Site (Southern Sicily, Italy). Surv Geophys 39, 1181–1200 (2018). https://doi.org/10.1007/s10712-018-9483-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9483-1

Keywords

Navigation