Skip to main content

Advertisement

Log in

Global Research Patterns on Ground Penetrating Radar (GPR)

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The article deals with the analysis of worldwide research patterns concerning ground penetrating radar (GPR) during 1995–2014. To do this, the Thomson Reuters’ Science Citation Index Expanded (SCI-EXPANDED) and the Social Sciences Citation Index accessed via the Web of Science Core Collection were the two bibliographic databases taken as a reference. We pay attention to the document typology and language, the publication trend and citations, the subject categories and journals, the collaborations between authors, the productivity of the authors, the most cited articles, the countries and the institutions involved, and other hot issues. Concerning the main research subfields involving GPR use, there were five, physical–mathematical, sedimentological–stratigraphical, civil engineering/engineering geology/cultural heritage, hydrological (HD), and glaciological (GL), subfields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(from Annan 2002)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alberti G, Ciofaniello L, Della Noce M, Esposito S, Galiero G, Persico R, Sacchettino M, Vetrella S (2001) A stepped frequency GPR system for underground prospecting. Ann Geophys 45(2):375–391

    Google Scholar 

  • Annan AP (2002) GPR—history, trends, and future developments. Subsurf Sens Technol Appl 3(4):253–270

    Article  Google Scholar 

  • Annan AP, Davis JL, Gendzwill D (1988) Radar sounding in potash mines: Saskatchewan, Canada. Geophysics 53:1556–1564

    Article  Google Scholar 

  • Annan AP, Redman JD, Pilon JA, Gilson EW, Johnston GB (1997) Crosshole GPR for engineering and environmental applications. In: Proceedings of the high resolution geophysics workshop, University of Arizona, Tuscon, AZ, January 6–9, 1997

  • Balanis CA, Rice WS, Smith NS (1976) Microwave measurements of coal. Radio Sci 11(4):413–418

    Article  Google Scholar 

  • Barbin Y, Nicollin F, Kofman W, Zolotarev V, Glotov V (1995) Mars 96 GPR program. J Appl Geophys 33:27–37

    Article  Google Scholar 

  • Bergmann T, Robertsson JOA, Holliger K (1996) Numerical properties of staggered finite-difference solutions of Maxwell’s equations for ground-penetrating radar modeling. Geophys Res Lett 23:45–48

    Article  Google Scholar 

  • Bergmann T, Robertsson JOA, Holliger K (1998) Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics 63(3):856–867

    Article  Google Scholar 

  • Bergmann T, Blanch JO, Robertsson JOA, Holliger K (1999) A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave propagation in frequency-dependent media. Geophysics 64(5):1369–1377

    Article  Google Scholar 

  • Binley A, Winship P, West LJ, Pokar M, Middleton R (2002) Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. J Hydrol 267(3–4):160–172

    Article  Google Scholar 

  • Buderi R (1996) The invention that changed the world. Simon & Schuster, New York

    Google Scholar 

  • Cai J, McMechan GA (1995) Ray-based synthesis of bistatic ground-penetrating radar profiles. Geophysics 60:87–96

    Article  Google Scholar 

  • Caldecott R, Poirier M, Scofea D, Svoboda DE, Terzuoli AJ (1988) Underground mapping of utility lines using impulse radar. Institute of Electrical Engineers, Proceedings F. communications, radar and signal processing 135 part F, pp 343–361

  • Carcione JM (1996) Ground-penetrating radar: wave theory and numerical simulation in lossy anisotropic media. Geophysics 61:1664–1677

    Article  Google Scholar 

  • Casper DA, Kung K-JS (1996) Simulation of ground-penetrating radar waves in a 2-D soil model. Geophysics 61:1034–1049

    Article  Google Scholar 

  • Chiu WT, Ho YS (2007) Bibliometric analysis of tsunami research. Scientometrics 73:3–17

    Article  Google Scholar 

  • Choudhury M, Chatterjee D, Mukherjee A (2010) Global topology of word co-occurrence networks: beyond the two-regime power-law. In: Proceedings of international conference on computational linguistics, pp 162–170

  • Chuang KY, Huang YL, Ho YS (2007) A bibliometric and citation analysis of stroke-related research in Taiwan. Scientometrics 72(2):201–212

    Article  Google Scholar 

  • Conyers LB (2012) Interpreting ground-penetrating radar for archaeology. Left Coast Press, Walnut Creek, CA

    Google Scholar 

  • Cook JC (1973) Radar exploration through rock in advance of mining: Trans. Society Mining Engineers, AIME, v. 254, pp 140–146

  • Cook JC (1975) Radar transparencies of mine and tunnel rocks. Geophysics 40(5):865–885

    Article  Google Scholar 

  • Cook JC (1977) Borehole radar exploration in a coal seam. Geophysics 42:1254–1257

    Article  Google Scholar 

  • Coon JB, Fowler JC, Schafers CJ (1981) Experimental uses of short pulse radar in coal seams. Geophysics 46(8):1163–1168

    Article  Google Scholar 

  • Dolphin LT (1978) Radar probing of Victorio Peak, New Mexico. Geophysics 43(7):1441–1448

    Article  Google Scholar 

  • El Said M (1956) Geophysical prospection of underground water in the desert by means of electromagnetic interference fringes. Proc IRE 44, 24–30, and 940

  • Evans S (1963) Radio techniques for the measurements of ice thickness. Polar Rec 11:406–410

    Article  Google Scholar 

  • Fan GX, Liu QH (2000) A FDTD algorithm with perfectly matched layers for general dispersive media. IEEE Trans Antennas Propag 48(5):637–646

    Article  Google Scholar 

  • Garcia-Ramon MD, Caballé A (1998) Situating gender geographies: a bibliometric analysis. Tijdschriftvoor Economischeen Sociale Geografie 89(2):210–216

    Article  Google Scholar 

  • Geng N, Carin L (1999) Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium. IEEE Trans Antennas Propag 47(4):610–619

    Article  Google Scholar 

  • Gizzi FT (2015) Worldwide trends in research on the San Andreas Fault System. Arab J Geosci 8(12):10893–10909. https://doi.org/10.1007/s12517-015-1878-4

    Article  Google Scholar 

  • Gizzi FT, Leucci G (2017) Global research patterns on Ground Penetrating Radar (GPR). In: Proceedings of 3rd IMEKO international conference on metrology for archaeology and cultural heritage (MetroArchaeo), Lecce, October 23–25, 2017, Late papers, pp 1–s6

  • Gizzi FT, Loperte A, Lapenna V, Masini N, Proto M (2010) Georadar investigations to detect cavities in a historical town damaged by an earthquake of the past. Adv Geosci 24:15–21

    Article  Google Scholar 

  • Gobster PH (2014) (Text) Mining the LANDscape: themes and trends over 40 years of Landscape and Urban Planning. Landsc Urban Plan 126:21–30

    Article  Google Scholar 

  • Grant J, Cottrell R, Cluzeau F, Fawcett G (2000) Evaluating ‘payback’ on biomedical research from papers cited in clinical guidelines: applied bibliometric study. Br Med J. https://doi.org/10.1136/bmj.320.7242.1107

    Article  Google Scholar 

  • Grasmueck M (1996) 3-D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics 61:1050–1064

    Article  Google Scholar 

  • Greaves RJ, Lesmes DP, Lee JM, Toksoz MN (1996) Velocity variations and water content estimated from multi-offset, ground-penetrating radar. Geophysics 61(3):683–695

    Article  Google Scholar 

  • Gurel L, Oguz U (2000) Three-dimensional FDTD modeling of a ground-penetrating radar. IEEE Trans Geosci Remote Sens 38(4):1513–1521

    Article  Google Scholar 

  • Huang Q, Li Z, Wang Y (2010) A parallel 3-D staggered grid pseudospectral time domain method for ground-penetrating radar wave simulation. J Geophys Res Solid Earth 115(B12):B12101. https://doi.org/10.1029/2010JB007711

    Article  Google Scholar 

  • Huggenberger P, Aigner T (1999) Introduction to the special issue on aquifer-sedimentology: problems, perspectives and modern approaches. Sediment Geol 129:179–186

    Article  Google Scholar 

  • Hulsenbeck & Co (1926) VerfahrenzurelektrischenBodenforschung German patent 489434

  • Hulsmeyer C (1904) German Patent No. 165546

  • Jadoon KZ, Lambot S, Scharnagl B, Van der Kruk J, Slob E, Vereecken H (2010) Quantifying field-scale surface soil water content from proximal GPR signal inversion in the time domain. Near Surf Geophys 8(6):483–491

    Google Scholar 

  • Kessler MM (1963) Bibliographic coupling between scientific papers. Am Doc 14(1):10–25

    Article  Google Scholar 

  • Kim KH, Park YJ, Park HK (2004) Development of ground-penetrating image radar using a novel compact ultra-wideband monopole antenna. Microw Opt Technol Lett 43(6):521–524

    Article  Google Scholar 

  • Klingbeil R, Kleineidam S, Asprion U, Aigner T, Teutsch G (1999) Relating lithofacies to hydrofacies: outcrop-based hydrogeological characterisation of Quaternary gravel deposits. Sediment Geol 129(3–4):299–310

    Article  Google Scholar 

  • Lambot S, Slob EC, van den Bosch I, Stockbroeckx B, Vanclooster M (2004) Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. IEEE Trans Geosci Remote Sens 42:2555–2568

    Article  Google Scholar 

  • Lampe B, Holliger K (2000) Finite-difference modelling of ground-penetrating radar antenna radiation. In: Noon DA, Stickley GF, Longstaff D (eds) Proceedings of the eighth international conference on ground penetrating radar, 23–26 May 2000, vol 4084. SPIE, Gold Coast, Australia, pp 556–560

  • Leimbach G, Löwy H (1910a) VerfahrenzursystematischenErforschung des ErdinnerngrößererGebietemittelselektrischerWellen. German patent 237944

  • Leimbach G, Löwy H (1910b) VerfahrenzumNachweisunterirdischerErzlageroder von GrundwassermittelselektrischerWellen. German patent 246836

  • Leucci G (2012) Ground penetrating radar: an application to estimate volumetric water content and reinforced bar diameter in concrete structures. J Adv Concr Technol 10(12):411–422

    Article  Google Scholar 

  • Leucci G, Negri S (2006) Use of ground penetrating radar to map subsurface archaeological features in an urban area. J Archaeol Sci 33:502–512

    Article  Google Scholar 

  • Leucci G, Persico R, Soldovieri F (2007) Detection of fractures from GPR data: the case history of the Cathedral of Otranto. J Geophys Eng 4:452–461

    Article  Google Scholar 

  • Leucci G, De Giorgi L, Gizzi FT, Persico R (2017) Integrated geo-scientific surveys in the historical centre of Mesagne (Brindisi, Southern Italy). Nat Hazards 86(2):363–383. https://doi.org/10.1007/s11069-016-2645-x

    Article  Google Scholar 

  • Liu L, Arcone SA (2014) Introduction to the GPR for hydrogeology and groundwater problems special issue of JEEG. J Environ Eng Geophys 19(4):205–206

    Article  Google Scholar 

  • Liu X, Zhan FB, Hong S, Niu B, Liu Y (2012) A bibliometric study of earthquake research: 1900–2010. Scientometrics 92(3):747–765. https://doi.org/10.1007/s11192-011-0599-z

    Article  Google Scholar 

  • Lytle RJ, Laine EF, Lager DL, Okada JT (1976) Determination of the in situ high frequency electrical properties of permafrost rock. Radio Sci 11(4):285–293

    Article  Google Scholar 

  • Macheret YY, Moskalevsky MY (1999) Study of Lange Glacier on King George Island, Antarctica. Ann Glaciol 3:202–206

    Article  Google Scholar 

  • Marx W, Bornmann L (2013) The emergence of plate tectonics and the Kuhnian model of a paradigm shift: a bibliometric case study based on the Anna Karenina principle. Scientometrics 94(2):595–614. https://doi.org/10.1007/s11192-012-0741-6

    Article  Google Scholar 

  • Moghadasi SM, Dehmollaian M (2014) Buried-object time-reversal imaging using UWB near-ground scattered fields. IEEE Trans Geosci Rem Sens 52(11):7317–7326

    Article  Google Scholar 

  • Morey RM (1976) Detection of subsurface cavities by ground penetrating radar. Highway Geol Symp 27:28–30

    Google Scholar 

  • Niu B, Hong S, Yuan J, Peng S, Wang Z, Zhang X (2014) Global trends in sediment-related research in earth science during 1992–2011: a bibliometric analysis. Scientometrics 98(1):511–529

    Article  Google Scholar 

  • Novakovic D, White CD, Corbeanu RM, Hammon WS, Bhattacharya JP, McMechan GA (2002) Hydraulic effects of shales in fluvial-deltaic deposits: ground-penetrating radar, outcrop observations, geostatistics and three-dimensional flow modeling for the Ferron Sandstone, Utah. Math Geol 34:857–893

    Article  Google Scholar 

  • Nunez-Nieto X, Solla M, Novo A, Lorenzo H (2014) Three-dimensional ground-penetrating radar methodologies for the characterization and volumetric reconstruction of underground tunneling. Constr Build Mater 71:551–560

    Article  Google Scholar 

  • Olsson O, Falk L, Forslund O, Sandberg E (1987) Crosshole investigations-results from Borehole radar investigations. Stripa Project TR 87-11. SKB, Stockholm

    Google Scholar 

  • Ori GG, Ogliani F (1996) Potentiality of the ground-penetrating radar for the analysis of the stratigraphy and sedimentology of Mars. Planet Space Sci 44:1303–1315

    Article  Google Scholar 

  • Persico R, Soldovieri F (2004) Effects of uncertainty on background permittivity in one-dimensional linear inverse scattering. J Opt Soc Am A Opt Image Sci Vis 21(12):2334–2343

    Article  Google Scholar 

  • Pierri R, Leone G, Soldovieri F, Persico R (2001) Electromagnetic inversion for subsurface applications under the distorted born approximation. Nuovo Cimento della Società Italiana di Fisica C-Geophys Space Phys 24(2):245–261

    Google Scholar 

  • Roberts RL, Daniels JJ (1997) Modeling near-field GPR in three dimensions using the FDTD method. Geophysics 62(4):1114–1126

    Article  Google Scholar 

  • Small HG, Koenig MED (1977) Journal clustering using a bibliographic coupling method. Inf Process Manag 13(5):277–288

    Article  Google Scholar 

  • Steenson BO (1951) Radar methods for exploration of glaciers. Pasadena California Institute of Technology, California

    Google Scholar 

  • Stern W (1929) Versucheinerelektrodynamischen Dickenmessung von Gletschereis. Gerlands Beitragezur Geophysik 23:292–333

    Google Scholar 

  • Sullivan A, Damarla R, Geng N, Dong Y, Carin L (2000) Ultrawide-band synthetic aperture radar for detection of unexploded ordnance: modeling and measurements. IEEE Trans Antennas Propag 48(9):1306–1315

    Article  Google Scholar 

  • Tabacco IE, Bianchi C, Chiappini M, Passerini A, Zirizzotti A, Zuccheretti E (1999) Latest improvements for the echo sounding system of the Italian radar glaciological group and measurements in Antartica. Ann Geofis 42(2):271–276

    Google Scholar 

  • Tang L, Walsh J (2010) Bibliometric fingerprints: name disambiguation based on approximate structure equivalence of cognitive maps. Scientometrics 84:763–784

    Article  Google Scholar 

  • Teixeira FL, Chew WC (2000) Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media. IEEE Trans Geosci Remote Sens 38(4):1530–1543

    Article  Google Scholar 

  • Tseng YH, Chang CY, Tutwiler MS, Lin MC, Barufaldi JP (2013) Ascientometric analysis of the effectiveness of Taiwan’s educational research projects. Scientometrics 95:1141–1166

    Article  Google Scholar 

  • Ulriksen CPF (1982) Application of impulse radar to civil engineering: unpublished Ph.D. thesis, Department of Engineering Geology, University of Technology, Lund, Sweden, p 175

  • Van Eck NJ, Waltman L (2011) Text mining and visualization using VOSviewer. ISSI Newsl 7(3):50–54

    Google Scholar 

  • Van Eck NJ, Waltman L (2014) Visualizing bibliometric networks. In: Ding Y, Rousseau R, Wolfram D (eds) Measuring scholarly impact: methods and practice. Springer, Berlin, pp 285–320

    Google Scholar 

  • Van Rijsbergen CJ (1977) A theoretical basis for the use of co-occurrence data in information retrieval. J Doc 33:106–119

    Article  Google Scholar 

  • Waite AH, Schmidt SJ (1961) Gross errors in height indication from pulsed radaraltimeters operating over thick ice or snow, IRE International Convention Record, Part 5, pp 38–54

  • Waltman L, Van Eck NJ, Noyons E (2010) A unified approach to mapping and clustering of bibliometric networks. J Infometrics 4(4):629–635

    Article  Google Scholar 

  • Wang Q, Yang Z, Yang Y, Long C, Li H (2014) A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2013.12.066

    Article  Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr Periglac Process 14:151–160

    Article  Google Scholar 

  • Zhao D, Strotmann A (2008) Evolution of research activities and intellectual influences in information science 1996–2005: introducing author bibliographic-coupling analysis. J Am Soc Inf Sci Technol 59(13):2070–2086

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers for their helpful and constructive comments that contributed to improving the final version of the article.

This article represents an extended version of a paper that the authors published in the proceedings of the 3rd IMEKO International Conference on Metrology for Archaeology and Cultural Heritage (Gizzi and Leucci 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Terenzio Gizzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gizzi, F.T., Leucci, G. Global Research Patterns on Ground Penetrating Radar (GPR). Surv Geophys 39, 1039–1068 (2018). https://doi.org/10.1007/s10712-018-9475-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9475-1

Keywords

Navigation