Skip to main content

Advertisement

Log in

Photochemistry of Ions at D-region Altitudes of the Ionosphere: A Review

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2015

Abstract

The current state of knowledge of the D-region ion photochemistry is reviewed. Equations determining production rates of electrons and positive ions by photoionization of atmospheric neutral species are presented and briefly discussed. Considerable attention is given to the progress in the chemistry of O+(4S), O+(2D), O+(2P), N+, N2 +, O2 +, NO+, N4 +, O4 +, NO+(N2), NO+(CO2), NO+(CO2)2, NO+(H2O) n for n = 1–3, NO+(H2O)(N2), NO+(H2O)2(N2), NO+(H2O)(CO2), NO+(H2O)2(CO2), O2 +(H2O), H3O+(OH), H+(H2O) n for n = 1–8, O, O2 , O3 , O4 , OH, CO3 , CO4 , NO2 , NO3 , ONOO, Cl, Cl(H2O), Cl(CO2), HCO3 , CO3 (H2O), CO3 (H2O)2, NO3 (H2O), NO3 (H2O)2, OH(H2O), and OH(H2O)2 ions. The analysis of the D-region rocket ion mass spectrometer measurements shows that, among these ions, O2 +, NO+, NO+(H2O), and H+(H2O) n for n = 1–7 can make the main contribution to the total positive ion number density, and O, O2 , Cl, OH(H2O), CO3 , HCO3 , NO3 , ONOO, CO4 , NO3 (H2O), NO3 (H2O)2, and 35Cl(CO2) ions can be responsible for the main contribution to the total negative ion number density. Photodetachment of electrons from O, Cl, O2 , O3 , OH, NO2 , and NO3 , dissociative electron photodetachment of O4 and OH(H2O), and photodissociation of O3 , O4 , CO3 , CO4 , ONOO, HCO3 , CO3 (H2O), NO3 (H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2–4, NO+(N2), and NO+(CO2) are studied, and the photodetachment and photodissociation rate coefficients are calculated using the current state of knowledge on the cross sections of these processes and fluxes of solar radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdou WA, Torr DG, Richards PG, Torr MR, Breig EL (1984) Results of a comprehensive study of the photochemistry of N2 + in the ionosphere. J Geophys Res 89(10):9069–9079

    Google Scholar 

  • Adams NG, Bohme DK, Dunkin DB, Fehsenfeld FC, Ferguson EE (1970) Flowing afterglow studies of formation and reactions of cluster ions of O2 +, O2 , and O. J Chem Phys 52(6):3133–3140

    Google Scholar 

  • Aikin AC, Goldberg RA, Jones W, Kane JA (1977) Observations of the mid-latitude lower ionosphere in winter. J Geophys Res 82(13):1869–1875

    Google Scholar 

  • Albritton DL (1978) Ion-neutral reaction-rate constants measured in flow reactors through 1977. At Data Nucl Data Tables 22(1):1–89

    Google Scholar 

  • Albritton DL, Dotan I, Lindinger W, McFarland M, Tellinghuisen J, Fehsenfeld FC (1977) Effects of ion speed distributions in flow-drift tube studies on ion -neutral reactions. J Chem Phys 66(2):410–421

    Google Scholar 

  • Aleksandrov NL (1988) Reviews of topical problems: three-body electron attachment to a molecule. Soviet Phys Uspekhi 31(2):101–118. doi:10.1070/PU1988v031n02ABEH005664

    Google Scholar 

  • Amelynck C, Arijs E, Schoon N, Van Bavel A-M (1998) Gas phase reactions of HNO3 with Cl, ClH2O, and ClHCl, of Cl2 with ClH2O and ClHCl, and of HCl with ClH2O. Int J Mass Spectrom 181(1–3):113–121

    Google Scholar 

  • André L (1984) Negative Ionen während der Sonnenfinsternis vom 26. Feb. 1979. Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern zur Erlaugung der Doktorwürde. der Universität Bern, Bern

  • Angel L, Stace AJ (1999) Reappraisal of the contribution from [O2·(H2O)n]+ cluster ions to the chemistry of the ionosphere. J Phys Chem A 103(16):2999–3005

    Google Scholar 

  • Aquilanti V, Ascenzi D, Bartolomei M, Cappelletti D, Cavalli S, de Castro VM, Pirani F (1999) Quantum interference scattering of aligned molecules: bonding in O4 and role of spin coupling. Phys Rev Lett 82(1):69–72

    Google Scholar 

  • Arnold F, Joos W (1979) Rapid growth of atmospheric cluster ions at the cold mesopause. Geophys Res Lett 6(10):763–766

    Google Scholar 

  • Arnold F, Krankowsky D (1974) Measurements of H2O2 + in the D-region and implications for mesospheric H2O2. Geophys Res Lett 1(6):243–245

    Google Scholar 

  • Arnold F, Krankowsky D (1979) Mid-latitude lower ionosphere structure and composition measurements during winter. J Atmosph Terr Phys 41(10–11):1127–1140

    Google Scholar 

  • Arnold F, Viggiano AA (1982) Combined mass spectrometric composition measurements of positive and negative ions in the lower ionosphere. I: Positive ions. Plan Space Sci 30(12):1295–1305

    Google Scholar 

  • Arnold F, Kissel J, Krankowsky D, Wieder H, Zähringer J (1971) Negative ions in the lower ionosphere: a mass-spectrometric measurement. J Atmosph Terr Phys 33(8):1169–1175

    Google Scholar 

  • Arnold F, Viggiano AA, Ferguson EE (1982) Combined mass spectrometric composition measurements of positive and negative ions in the lower ionosphere. II: Negative ions. Plan Space Sci 30(12):1307–1314

    Google Scholar 

  • Arnold ST, Morris RA, Viggiano AA (1995a) Temperature dependencies of the reactions of CO3 (H2O)0,1 and O3 with NO and NO2. J Chem Phys 103(7):2454–2458

    Google Scholar 

  • Arnold DW, Bradforth SE, Kim EH, Neumark DM (1995b) Study of halogen-carbon dioxide clusters and the fluoroformyloxyl radical by photodetachment of X-(CO2) (X = I, Cl, Br) and FCO2−. J Chem Phys 102(9):3493–3509

    Google Scholar 

  • Atkins PW (1978) Physical chemistry. Oxford Univerity Press, Oxford

    Google Scholar 

  • Bailey SM, Woods TN, Barth CA, Solomon SC, Korde R, Canfield LR (2000) Measurements of the solar soft X-ray irradiance by the student nitric oxide explorer: first analysis and underflight calibrations. J Geophys Res 105(12):27179–27194

    Google Scholar 

  • Bailey SM, Woods TN, Barth CA, Solomon SC, Korde R, Canfield LR (2001) Correction to Measurements of the solar soft X-ray irradiance by the student nitric oxide explorer: first analysis and underflight calibrations. J Geophys Res 106(8):15791–15792

    Google Scholar 

  • Bailey SM, Woods TN, Eparvier FG, Solomon SC (2006) Observations of the solar soft X-ray irradiance by the student nitric oxide explorer. Adv Space Res 37(2):209–218

    Google Scholar 

  • Bainbridge G, Inan US (2003) Ionospheric D region electron density profiles derived from the measured interference pattern of VLF waveguide modes. Radio Sci 38(4):1077. doi:10.1029/2002RS0026863

    Google Scholar 

  • Balsiger F, Kopp E, Friedrich M, Torkar KM, Walchli U (1993) Small-scale structure of O2 + and proton hydrates in a Noctilucent Cloud and polar mesospheric summer echo of August 9/10 1991 above Kiruna. Geophys Res Lett 20(20):2315–2318

    Google Scholar 

  • Balsiger F, Kopp E, Friedrich M (1995) First positive ion depletion in a noctilucent cloud and its implication on the particle size distribution. European rocket and balloon programmes and related research, 12th ESA Symposium. Lillehammer, Norway, 29 May–1 June 1995, Edited by T.A. Blix, ESA SP #370, Paris: European Space Agency (ESA), pp 87–93.

  • Balsiger F, Kopp E, Friedrich M, Torkar KM, Wälchli U, Witt G (1996) Positive ion depletion in a noctilucent cloud. Geophys Res Lett 23(1):93–96

    Google Scholar 

  • Bardeen CG, Toon OB, Jensen EJ, Marsh DR, Harvey VL (2008) Numerical simulations of the three- dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J Geophys Res 113(17):D17202. doi:10.1029/2007JD0095152008

    Google Scholar 

  • Bates DR, Flannery MR (1968) Three-Body Recombination of Positive and Negative Ions II General Third Body. Proc Roy Soc Lond Ser A Math Phys Sci 302(1470):367–383

    Google Scholar 

  • Bates DR, Mendas I (1982) Termolecular ionic recombination at low ambient gas density for the case of a polarisation interaction. J Phys B At Mol Opt Phys 15(12):1949–1956

    Google Scholar 

  • Bates DE, Porter JN (2008) AO3D: a Monte Carlo code for modeling of environmental light Propagation. J Quant Spectrosc Radiat Transf 109(10):1802–1814

    Google Scholar 

  • Belostotsky SG, Economou DJ, Lopaev DV, Rakhimova TV (2005) Negative ion destruction by O(3P) atoms and O2(a1Δg) molecules in an oxygen plasma. Plasma Sources Sci Technol 14(3):532–542

    Google Scholar 

  • Beyer RA, Vanderhoff JA (1976) Cross section measurements for photodetachment or photodissociation of ions produced in gaseous mixtures of O2, CO2, and H2O. J Chem Phys 65(6):2313–2321

    Google Scholar 

  • Biondi MA (1969) Atmospheric electron–ion and ion–ion recombination processes. Can J Chem 47(10):1711–1719. doi:10.1139/v69-282

    Google Scholar 

  • Bishop J (1999) Transport of resonant atomic hydrogen emissions in the thermosphere and geocorona: model description and applications. J Quant Spectrosc Radiat Transfer 61(4):473–491

    Google Scholar 

  • Björn LG, Arnold F (1981) Mass spectrometric detection of precondensation nuclei at the artic summer mesopause. Geophys Res Lett 8(11):1167–1170

    Google Scholar 

  • Björn LG, Arnold F, Krankowsky D, Grandal B, Hagen O, Thrane EV (1979) Lower ionosphere ion production density and composition in an auroral absorption event. J Atmosph Terr Phys 41(12):1185–1194

    Google Scholar 

  • Björn LG, Kopp E, Herrmann U, Eberhardt P, Dickinson PHG (1985) Heavy ionospheric ions in the formation process of noctilucent clouds. J Geophys Res 90(5):7985–7998

    Google Scholar 

  • Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann OC, Vogel A, Hartmann M, Kromminga H, Bovensmann H, Frerick J, Burrows JP (2003) Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region. J Photochem Photobiol A Chem 157(2–3):167–184. doi:10.1016/S1010-6030(03)00062-5

    Google Scholar 

  • Böhringer H, Arnold F (1982) Temperature dependence of three-body association reactions from 45 to 400 K. The reactions N2 + + 2N2 → N4 + + N2 and O2 + + 2O2 → O4 + + O2. J Chem Phys 77(11):5534–5541

    Google Scholar 

  • Böhringer H, Fahey DW, Fehsenfeld FC, Ferguson EE (1984a) Temperature dependence of the three- body association of Cl , NO2 , and NO3 with SO2. J Chem Phys 81(6):2696–2698

    Google Scholar 

  • Böhringer H, Fahey DW, Fehsenfeld FC, Ferguson EE (1984b) Bond energies of the molecules H2O, SO2, H2O2, and HCl to various atmospheric negative ions. J Chem Phys 81(6):2805–2810

    Google Scholar 

  • Bonin KD, Kresin VV (1997) Electric-dipole polarizabilities of atoms, molecules, and clusters. World Scientific Publishing Co Pte Ltd, Singapore

    Google Scholar 

  • Branscomb LM (1966) Photodetachment Cross Section, Electron Affinity, and Structure of the Negative Hydroxyl Ion. Phys Rev 148(1):11–18

    Google Scholar 

  • Branscomb LM, Burch DS, Smith SJ, Geltman S (1958) Photodetachment cross section and the electron affinity of atomic oxygen. Phys Rev 111(2):504–513

    Google Scholar 

  • Branscomb LM, Smith SJ, Tisone G (1965) Oxygen metastable atom production through photodetachment. J Chem Phys 43(8):2906–2907

    Google Scholar 

  • Brasseur GP, Solomon S (2005) Aeronomy of the middle atmosphere. Chemistry and physics of stratosphere and mesosphere. Third revised and enlarged Edition. Springer, Dordrecht

    Google Scholar 

  • Burch DS, Geballe R (1957) Ionic drift velocities and electron attachment coefficients in oxygen. Phys Rev 106(2):183–187

    Google Scholar 

  • Burt JA (1972) Photodetachment cross sections for CO3 and its first hydrate. J Chem Phys 57(11):4649–4650

    Google Scholar 

  • Cao YS, Johnsen R (1991) Recombination of N4 + ions with electrons. J Chem Phys 95(10):7356–7359

    Google Scholar 

  • Chabrillat S, Kockarts G (1997) Simple parameterization of the absorption of the solar Lyman-alpha line. Geophys Res Lett 24(21):2659–2662

    Google Scholar 

  • Chase RL, Kelly HP (1972) Many-body calculation of the photodetachment cross section of O. Phys Rev A 6(6):2150–2156

    Google Scholar 

  • Chatterjee BK, Johnsen R (1990) An estimating formula for ion-atom association rates in gases. J Chem Phys 93(8):5681–5684

    Google Scholar 

  • Chau JL, Woodman RF (2005) D and E region incoherent scatter radar density measurements over Jicamarca. J Geophys Res 110(12):A12314. doi:10.1029/2005JA011438

    Google Scholar 

  • Chipman DM (2011) Hemibonding between hydroxyl radical and water. J Phys Chem A 115(7):1161–1171. doi:10.1021/jp110238v

    Google Scholar 

  • Clodius WB, Stehman RM, Woo SB (1983) Zero-core-contribution calculation of a polyatomic photodetachment cross section: NO2 . Phys Rev A 28(2):760–765

    Google Scholar 

  • Comer J, Schulz GJ (1974) Measurements of electron detachment cross sections from O. J Phys B 7(8):L249–L253

    Google Scholar 

  • Constantinides ER, Black JH, Dalgarno A, Hoffman JH (1979) The photochemistry of N+ ions. Geophys Res Lett 6(7):569–572

    Google Scholar 

  • Conway DC, Janik GS (1970) Determination of the Bond Energies for the Series O2–O2 + through O2–O10+. J Chem Phys 53(5):1859–1866

    Google Scholar 

  • Conway DC, Nesbitt LE (1968) Stability of O4. J Chem Phys 48(1):509–510

    Google Scholar 

  • Cosby PC, Bennett RA, Moseley JT, Peterson JR (1975) Photodissociation and photodetachment of molecular negative ions. II - Ions formed in oxygen. J Chem Phys 63(4):1612–1620

    Google Scholar 

  • Cosby PC, Ling JH, Peterson JR, Moseley JT (1976) Photodissociation and photodetachment of molecular negative ions. III: Ions formed in CO2/O2/H2O mixtures. J Chem Phys 65(12):5267–5274

    Google Scholar 

  • Cunningham AJ, Payzant JD, Kebarle P (1972) Kinetic study of the proton hydrate H+(H2O)n equilibriums in the gas phase. J Am Chem Soc 94(22):7627–7632. doi:10.1021/ja00777a003

    Google Scholar 

  • Das AK, Thakkar AJ (1998) Static response properties of second-period atoms: coupled cluster calculations. J Phys B 31(10):2215–2223

    Google Scholar 

  • Dheandhanoo S, Johnsen R (1983) Laboratory measurements of the association rate coefficients of NO+, O2 +, N+, and N2 + ions with N2 and CO2 at temperatures between 100 K and 400 K. Plan Space Sci 31(8):933–938

    Google Scholar 

  • Dinu L (2004) Photodestruction of NO2 using time resolved multicoincidence detection photofragment spectroscopy. Chem Phys 300(1–3):133–141

    Google Scholar 

  • Dinu L, Groenenboom GC, van der Zande WJ (2003) Competition between photodetachment and photodissociation in O2 . J Chem Phys 119(17):8864–8872

    Google Scholar 

  • Dotan I, Davidson JA, Fehsenfeld FC, Albritton DL (1978) Reactions of O2 +·O2 with CO2, O3, and CH4 and O2 +·O3 with H2O and CH4 and their role in stratospheric ion chemistry. J Geophys Res 83(8):4036–4038

    Google Scholar 

  • Dotan I, Hierl PM, Morris RA, Viggiano AA (1997) Rate constants for the reactions of N+ and N2 + with O2 as a function of temperature (300-1800 K). Int J Mass Spectrom Ion Proc 167(168):223–230

    Google Scholar 

  • Dulaney JL, Biondi MA, Johnsen R (1988) Electron-temperature dependence of the recombination of electrons with O4 + ions. Phys Rev A 37(7):2539–2542

    Google Scholar 

  • Dyke TR, Muenter JS (1973) Electric dipole moments of low J states of H2O and D2O. J Chem Phys 59(6):3125–3127

    Google Scholar 

  • Eletskii AV, Smirnov BM (1991) Kinetics of prebreakdown phenomena in atmospheric air. J Phys D Appl Phys 24(12):2175–2178

    Google Scholar 

  • Ervin KM, Ho J, Lineberger WC (1988) Ultraviolet photoelectron spectrum of NO2 . J Phys Chem 92(19):5405–5412. doi:10.1021/j100330a017

    Google Scholar 

  • Eyet N, Shuman NS, Viggiano AA, Troe J, Relph RA, Steele RP, Johnson MA (2011) The importance of NO+(H2O)4 in the Conversion of NO+(H2O)n to H3O+(H2O)n: I. Kinetics measurements and statistical rate modeling. J Phys Chem A 115(26):7582–7590

    Google Scholar 

  • Fehsenfeld FC, Ferguson EE (1972a) Recent laboratory measurements of D- and E-region ion-neutral reactions. Radio Sci 7(1):113–115

    Google Scholar 

  • Fehsenfeld FC, Ferguson EE (1972b) Thermal energy reaction rate constants for H+ and CO+ with O and NO. J Chem Phys 56(3):3066–3070

    Google Scholar 

  • Fehsenfeld FC, Ferguson EE (1973) Atmospheric atomic sulfur ion reactions. J Geophys Res 78(10):1699–1701

    Google Scholar 

  • Fehsenfeld FC, Mosesman M, Ferguson EE (1971) Ion-molecule reactions in O2 +–H2O system. J Chem Phys 55(5):2115–2120

    Google Scholar 

  • Fehsenfeld FC, Howard CG, Harrop WJ, Ferguson EE (1975) Laboratory measurements of the reactions of NO+(H2O) with H and OH and their significance for D region ion chemistry. J Geophys Res 80(16):2229–2235

    Google Scholar 

  • Fennelly JA, Torr DG (1992) Photoionization and photoabsorption cross sections of O, N2 O2, and N for aeronomic calculations. At Data Nucl Data Tables 51(2):321–363

    Google Scholar 

  • Ferguson EE, Bohme DK, Fehsenfeld FC, Dunkin DB (1969) Temperature dependence of slow ion: atom interchange reactions. J Chem Phys 50(11):5039–5040

    Google Scholar 

  • Fortov VE, Khrapak AG, Khrapak SA, Molotkov VI, Petrov OF (2004) Reviews of topical problems: dusty plasmas. Physics Uspekhi 47(5):447–492. doi:10.1070/PU2004v047n05ABEH001689

    Google Scholar 

  • French MA, Hills LP, Kebarle P (1973) Kinetics and temperature dependence of the hydration of NO+ in the gas phase. Canad J Chem 51(3):456–461. doi:10.1139/v73-068

    Google Scholar 

  • Friedrich M, Rapp M (2009) News from the lower ionosphere: a review of recent developments. Surv Geophys 30(6):525–559

    Google Scholar 

  • Friedrich M, Torkar KM (2001) FIRI: a semiempirical model of the lower ionosphere. J Geophys Res 106(11):21409–21418

    Google Scholar 

  • Friedrich M, Torkar KM, Krankowsky D, Lammerzahl P, Witt G, Zuber A, Thrane EV, Blix TA (1990) Case study of modelled and measured D-region plasma densities. J Atmosph Terr Phys 52(10–11):1085–1093

    Google Scholar 

  • Friedrich M, Torkar KM, Singer W, Strelnikova I, Rapp M, Robertson S (2009) Signatures of mesospheric particles in ionospheric data. Ann Geophys 27(2):823–829

    Google Scholar 

  • Friedrich M, Rapp M, Blix T, Hoppe U-P, Torkar K, Robertson S, Dickson S, Lynch K (2012) Electron loss and meteoric dust in the mesosphere. Ann Geophys 30(10):1495–1501

    Google Scholar 

  • Fritzenwallner J, Kopp E (1998) Model calculations of the negative ion chemistry in the mesosphere with special emphasis on the chlorine species and the formation of cluster ions. Adv Space Res 21(6):891–894

    Google Scholar 

  • Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112(9):D09301. doi:10.1029/2006JD007485

    Google Scholar 

  • Gioumousis G, Stevenson DP (1958) Reactions of gaseous molecule ions with gaseous molecules. V Theory J Chem Phys 29(2):294–299

    Google Scholar 

  • Goldberg RA, Aikin AC (1971) Studies of positive-ion composition in the equatorial D-region ionosphere. J Geophys Res 76(34):8352–8364

    Google Scholar 

  • Goldberg RA, Blumle LJ (1970) Positive ion composition from a rocket-borne mass spectrometer. J Geophys Res 75(1):133–142

    Google Scholar 

  • Goldberg RA, Witt G (1977) Ion composition in a noctilucent cloud region. J Geophys Res 82(19):2619–2627

    Google Scholar 

  • Golub S, Steiner B (1968) Phototetachment of OH(H2O). J Chem Phys 49(11):5191–5192

    Google Scholar 

  • Good A, Durden DA, Kebarle P (1970a) Ion-molecule reactions in pure nitrogen and nitrogen containing traces of water at total pressures 0.5–4 torr. Kinetics of clustering reactions forming H+(H2O)n. J Chem Phys 52(1):212–221

    Google Scholar 

  • Good A, Durden DA, Kebarle P (1970b) Mechanism and rate constants of ion-molecule reactions leading to formation of H+(H2O)n in moist oxygen and air. J Chem Phys 52(1):222–229

    Google Scholar 

  • Goody RM, Yung YL (1989) Atmospheric radiation. Oxford University Press, New York

    Google Scholar 

  • Grebowsky JM, Bilitza D (2000) Sounding rocket data base of E- and D-region ion composition. Adv Space Res 25(1):183–192

    Google Scholar 

  • Haldoupis C (2012) Midlatitude Sporadic E. A Typical Paradigm of Atmosphere-Ionosphere Coupling 168(1–4):441–461

    Google Scholar 

  • Hall LA, Hinteregger HE (1970) Solar radiation in the extreme ultraviolet and its variation with solar rotation. J Geophys Res 75(34):6959–6965

    Google Scholar 

  • Hamon S, Speck T, Mitchell JBA, Rowe B, Troe J (2005) Experimental and modeling study of the ion-molecule association reaction H3O++H2O(+M) → H5O2 +(+M). J Chem Phys 123(5):054303–054303-9. doi:10.1063/1.1935520

    Google Scholar 

  • Hanold KA, Sherwood CR, Continetti RE (1995) Photoelectron-neutral-neutral coincidence studies of dissociative photodetachment. J Chem Phys 103(22):9876–9879

    Google Scholar 

  • Hanold KA, Garner MC, Continetti RE (1996) Photoelectron-photofragment angular correlation and energy partitioning in dissociative photodetachment. Phys Rev Lett 77(16):3335–3338

    Google Scholar 

  • Harder JW, Fontenla J, Lawrence G, Woods T, Rottman G (2005) The spectral irradiance monitor: measurement equations and calibration. Sol Phys 230(1–2):169–203

    Google Scholar 

  • Hargreaves JK, Friedrich M (2003) The estimation of D-region electron densities from riometer data. Ann Geophys 82(3):603–613

    Google Scholar 

  • Hasted J (1964) Physics of atomic collisions. Butterworths, London

    Google Scholar 

  • Heimerl JM, Vanderhoff JA (1974) Rate coefficients for the clustering of CO2, N2, and O2 to NO+. J Chem Phys 60(11):4362–4368

    Google Scholar 

  • Henke BL, Gullikson EM, Davis JC (1993) X-Ray interactions: photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. At Data Nucl Data Tables 54(2):181–342

    Google Scholar 

  • Hickman AP (1979) Approximate scaling formula for ion–ion mutual neutralization rates. J Chem Phys 70(11):4872–4878

    Google Scholar 

  • Hierl PM, Paulson JF (1984) Translational energy dependence of cross sections for reactions of OH(H2O)n with CO2 and SO2. J Chem Phys 80(10):4890–4900

    Google Scholar 

  • Hierl PM, Dotan I, Seeley JV, Van Doren JM, Morris RA, Viggiano AA (1997) Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (300-1800 K). J Chem Phys 106(9):3540–3544

    Google Scholar 

  • Hiller JF, Vestal ML (1980) Tandem quadrupole study of laser photodissociation of CO3 . J Chem Phys 72(9):4713–4722

    Google Scholar 

  • Hiller JF, Vestal ML (1981) Laser photodissociation of O3 by triple quadrupole mass spectrometry. J Chem Phys 74(11):6096–6105

    Google Scholar 

  • Hinteregger HE, Fukui K, Gilson BG (1981) Observational, reference and model data on solar EUV, from measurements on AE-E. Geophys Res Lett 8(11):1147–1150

    Google Scholar 

  • Hiraoka K (1988) A determination of the stabilities of O2 +(O2)n and O2 (O2)n with n = 1–8 from measurements of the gas-phase ion equilibria. J Chem Phys 89(5):3190–3194

    Google Scholar 

  • Hiraoka K, Nakajima J (1988) A determination of the stabilities of N2 +(N2)n and O2 +(N2)n with n = 1-11 from measurements of the gas-phase ion equilibria. J Chem Phys 88(12):7709–7714

    Google Scholar 

  • Hiraoka K, Yamabe S (1989) How are nitrogen molecules bound to NO2 + and NO+ ? J Chem Phys 90(6):3268–3273

    Google Scholar 

  • Hiraoka K, Yamabe S (1991) Cluster ions: gas-phase stabilities of NO + (O2)n and NO + (CO2)n with n = 1–5. J Chem Phys 95(9):6800–6805

    Google Scholar 

  • Hiraoka K, Yamabe S (1992) Formation of the chelate bonds in the cluster O2 (CO2)n, CO3 (CO2)n and NO2 (CO2)n. J Chem Phys 97(1):643–650

    Google Scholar 

  • Hiraoka K, Shoda T, Morise K, Yamabe S, Kawai E, Hirao K (1968) Stability and structure of cluster ions in the gas phase: carbon dioxide with Cl, H3O+, HCO2 +, and HCO+. J Chem Phys 84(4):2091–2096

    Google Scholar 

  • Hiraoka K, Shoda T, Morise K, Yamabe S, Kawai E, Hirao K (1986) Stability and structure of cluster ions in the gas phase: carbon dioxide with Cl, H3O+, HCO2 +, and HCO+. J Chem Phys 84(4):2091–2096

    Google Scholar 

  • Hlavenka P, Otto R, Trippel S, Mikosch J, Weidemüller M, Wester R (2009) Absolute photodetachment cross section measurements of the O and OH anion. J Chem Phys 130(6):061105. doi:10.1063/1.3080809

    Google Scholar 

  • Hodges RV, Lee LC, Moseley JT (1980) Photodissociation and photodetachment of molecular negative ions. IX. Atmospheric ions at 2484 and 3511 Å. J Chem Phys 72(5):2998–3000

    Google Scholar 

  • Honary F, Marple SR, Barratt K, Chapman P, Grill M, Nielsen E (2011) Invited Article: digital beam-forming imaging riometer systems. Rev Sci Instrum 82(3):031301. doi:10.1063/1.3567309

    Google Scholar 

  • Hong SP, Woo SB, Helmy EM (1977) Photodetachment of thermally relaxed CO3 . Phys Rev A 15(4):1563–1569

    Google Scholar 

  • Howard CJ, Rundle HW, Kaufman F (1971) Water Cluster Formation Rates of NO+ in He, Ar, N2 and O2 at 296°K. J Chem Phys 55(10):4772–4776

    Google Scholar 

  • Howard CJ, Bierbaum VM, Rundle HW, Kaufman F (1972) Kinetics and mechanism of the formation of water cluster ions from O2 + and H2O. J Chem Phys 57(8):3491–3497

    Google Scholar 

  • Huestis DL (2001) Accurate evaluation of the Chapman function for atmospheric attenuation. J Quant Spectrosc Radiat Transfer 69(6):709–721

    Google Scholar 

  • Huffman RE, Paulsen DE, Larrabee JC, Cairns RB (1971) Decrease in D-region O2 (1Δg) photoionization rates resulting from CO2 absorption. J Geophys Res 76(4):1028–1038

    Google Scholar 

  • Hunten DM, McElroy MB (1968) Metastable O2(1Δg) as major source of ions in the D-region. J Geophys Res 73(7):2421–2427

    Google Scholar 

  • Hunton DE, Hofmann M, Lindeman TG, Albertoni CR, Castleman AW Jr (1985) Photodissociation spectroscopy and dynamics of negative ion clusters. II. CO3 ·(H2O)1,2,3. J Chem Phys 82(7):2884–2895

    Google Scholar 

  • Itikawa Y, Ichimura A, Onda K, Sakimoto K, Takayanagi K, Hatano Y, Hayashi M, Nishimura H, Tsurubuchi S (1989) Cross sections for collisions of electrons and photons with oxygen molecules. J Phys Chem Ref Data 18(1):23–42

    Google Scholar 

  • Itoh H, Ando Y, Hayakawa M (2013) Simplified analysis techniques for VLF wave propagation in the earth-ionosphere waveguide. Electrical Engineering in Japan 183(1):25–31. doi:10.1002/eej.22302

    Google Scholar 

  • Jacobsen TA, Friedrich M (1979) Electron density measurements in the lower D-region. J Atmosph Terr Phys 41(12):1195–1200

    Google Scholar 

  • Jamieson CS, Mebel AM, Kaiser RI (2006) Identification of the D3 h isomer of carbon trioxide (CO3) and its implications for atmospheric chemistry. Eur J Chem Phys Phys Chem 7(12):2508–2513. doi:10.1002/cphc.200600390

    Google Scholar 

  • Johannessen A, Krankowsky D (1972) Positive-Ion Composition Measurement in the Upper Mesosphere and Lower Thermosphere at a High Latitude during Summer. J Geophys Res 77(16):2888–2901

    Google Scholar 

  • Johannessen A, Krankowsky D (1974) Daytime positive ion composition measurement in the altitude range 73-137 km above Sardinia. J Atmosph Terr Phys 36(7):1233–1247

    Google Scholar 

  • Kaneko Y, Megill LR, Hasted JB (1966) Study of Inelastic Collisions by Drifting Ions. J Chem Phys 45(10):3741–3751

    Google Scholar 

  • Kazil J (2002) The University of Bern Atmospheric Ion Model: Time-dependent ion modeling in the stratosphere, mesosphere and lower thermosphere. Ph.D. thesis, University of Bern, Bern, Switzerland

  • Kazil J, Kopp E, Chabrillat S, Bishop J (2002) The University of Bern Atmospheric Ion Model: time- dependent modeling of the ions in the mesosphere and lower thermosphere. J Geophys Res 108(14):4432. doi:10.1029/2002JD003024

    Google Scholar 

  • Kebarle P, Searles SK, Zolla A, Scarborough J, Arshadi M (1967) The solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solvation of the individual reactions: H+(H2O)n-1 + H2O → H+(H2O)n. J Am Chem Soc 89(25):6393–6399

    Google Scholar 

  • Keesee RG, Castleman AW Jr (1986) Thermochemical data on gas-phase ion-molecule association and clustering reactions. J Phys Chem Ref Data 15(3):1011–1071

    Google Scholar 

  • Keesee RG, Lee N, Castleman AW Jr (1979) Properties of clusters in the Gas Phase. 3. Hydration complexes of CO3 and HCO3 . J Am Chem Soc 101(10):2599–2604

    Google Scholar 

  • Keesee RG, Lee N, Castleman AW Jr (1980) Properties of clusters in the gas phase. V: complexes of neutral molecules onto negative ions. J Chem Phys 73(5):2195–2202

    Google Scholar 

  • Khuseynov D, Goebbert DJ, Sanov A (2012) Oxygen cluster anions revisited: solvent-mediated dissociation of the core O4 anion. J Chem Phys 136(9):094312. doi:10.1063/1.3691104

    Google Scholar 

  • Kirkwood S, Nilsson H (2000) High-latitude sporadic-e and other thin layers: the role of magnetospheric electric fields. Space Sci Rev 91(3/4):579–613

    Google Scholar 

  • Knappmiller S, Rapp M, Robertson S, Gumbel J (2011) Charging of meteoric smoke and ice particles in the mesosphere including photoemission and photodetachment rates. J Atmos Sol Terr Phys 73(14–15):2212–2220

    Google Scholar 

  • Kopnin SI, Morzhakova AA, Popel SI, Shukla PK (2011) Processes accompanying the charging of dust grains in the ionospheric plasma. Plasma Phys Rep 37(8):696–706. doi:10.1134/S1063780X11070117

    Google Scholar 

  • Kopp E (1984) Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement. Adv Space Res 4(6):13–18

    Google Scholar 

  • Kopp E (1990) Hydrogen constituents of the mesosphere inferred from positive ions: H2O, CH4, H2CO, H2O2, and HCN. J Geophys Res 95(5):5613–5630

    Google Scholar 

  • Kopp E (1997) On the abundance of metal ions in the lower ionosphere. J Geophys Res 102(5):9667–9674

    Google Scholar 

  • Kopp E, Herrmann U (1984) Ion composition in the lower ionosphere. Ann Geophys 2(1):83–94

    Google Scholar 

  • Kopp E, Eberhardt P, Herrmann U (1978) Summer daytime positive ion composition in the D-region above Wallops Island. Space Res 18:245–248

    Google Scholar 

  • Kopp E, Ramseyer H, Björn LG (1984) Positive ion composition and electron density in a combined auroral and NLC event. Adv Space Res 4(4):157–161

    Google Scholar 

  • Kopp E, Andre L, Smith LG (1985a) Positive ion composition and derived particle heating in the lower auroral ionosphere. J Atmos Terr Phys 47(1–3):301–308

    Google Scholar 

  • Kopp E, Eberhardt P, Herrmann U, Björn LG (1985b) Positive ion composition of the high-latitude summer D region with noctilucent clouds. J Geophys Res 90(7):13041–13053

    Google Scholar 

  • Kossyi IA, Kostinsky AYu, Matveyev AA, Silakov VP (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci Technol 1(3):207–220. doi:10.1088/0963-0252/1/3/011

    Google Scholar 

  • Krankowsky D, Arnold F, Wieder H, Kissel J, Ziihringer J (1972) Positive-ion composition in the lower ionosphere. Radio Sci 7(1):93–98

    Google Scholar 

  • Krankowsky D, Lammerzahl P, Gotzelmann A, Friedrich M, Torkar KM (1987) Positive ion composition in the lower ionosphere at high latitudes during MAP/WINE. J Atmos Terr Phys 49(7):809–818

    Google Scholar 

  • Langevin P (1905) Une Formule fondamentale de theorie Cinetique. Annales de chimie et de physique 5(8):245–288

    Google Scholar 

  • Lau YK, Ikuta S, Kebarle P (1982) Thermodynamics and kinetics of the gas-phase reactions H3O+(H2O)n-1 + water = H3O+(H2O)n. J Am Chem Soc 104(6):1462–1469

    Google Scholar 

  • Lavrich DJ, Buntine MA, Serxner D, Johnson MA (1993) Observation of the A 2Piu ← X 2Pig dissociative transition in isolated O2 using mass-selected photofragmentation spectroscopy. J Chem Phys 99(8):5910–5916

    Google Scholar 

  • Lean JL, Warren HP, Mariska JT, Bishop J (2003) A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather. J Geophys Res 108(2):A1059. doi:10.1029/2001JA009238

    Google Scholar 

  • Lean JL, Woods TN, Eparvier FG, Meier RR, Strickland DJ, Correira JT, Evans JS (2011) Solar extreme ultraviolet irradiance: present, past, and future. J Geophys Res 116(1):A01102. doi:10.1029/2010JA015901

    Google Scholar 

  • Lee LC, Smith GP (1979) Photodissociation and photodetachment of molecular negative ions. VI – Ions in O2/CH4/H2O mixtures from 3500 to 8600 A. J Chem Phys 70(4):1727–1735

    Google Scholar 

  • Lee N, Castleman AWJr, Keesee RG (1980) The properties of clusters in the gas phase. IV: Complexes of H2O and HNOx clustering on NO x . J Chem Phys 72(2):1089–1094

  • Leu MT, Biondi MA, Johnsen R (1973) Measurements of the Recombination of Electrons with H3O+·(H2O)n: Series Ions. Phys Rev A 7(1):292–298

    Google Scholar 

  • Li X, Ng CY (2003) Absolute charge transfer cross sections for the state-selected reactions O+(2D,2P) + O2. J Chem Phys 118(11):5260–5262

    Google Scholar 

  • Li R, Hanold KA, Garner MC, Luong AK, Continetti RE (1997a) Excited state dynamics in clusters of oxygen. Faraday Dis 108:115–130

    Google Scholar 

  • Li X, Huang Y-L, Flesch GD, Ng CY (1997b) A state-selected study of the ion-molecule reactions O+(4S, 2D, 2P) + N2. J Chem Phys 106(4):1373–1381

    Google Scholar 

  • Lifshitz C, Tassa R (1973) A study of the reaction O + NO2 → O + NO2 in a pulsed ion source. Int J Mass Spectrom Ion Phys 12(5):433–437

    Google Scholar 

  • Lifshitz C, Wu RLC, Haartz JC, Tiernan TO (1977) Associative detachment reactions of negative ions with O3. J Chem Phys 67(5):2381–2382

    Google Scholar 

  • Lin P, Lucchese RR (2001) Studies of angular distributions and cross sections for photodetachment from the oxygen molecular anion. J Chem Phys 114(21):9350–9360. doi:10.1063/1.1369134

    Google Scholar 

  • Lupinetti C, Thakkar AJ (2005) Polarizabilities and hyperpolarizabilities for the atoms Al, Si, P, S, Cl, and Ar: coupled cluster calculations. J Chem Phys 122(4):044301. doi:10.1063/1.1834512

    Google Scholar 

  • Lynch KA, Gelinas LJ, Kelley MC, Collins RL, Widholm M, Rau D, MacDonald E, Liu Y, Ulwick J, Mace P (2005) Multiple sounding rocket observations of charged dust in the polar winter mesosphere. J Geophys Res 110(3):A03302. doi:10.1029/2004JA010502

    Google Scholar 

  • Mahajan KK, Lodhi NK, Upadhayaya AK (2010) Observations of X-ray and EUV fluxes during X- class solar flares and response of upper ionosphere. J Geophys Res 115(12):A12330. doi:10.1029/2010JA015576

    Google Scholar 

  • Mandl A (1976) Electron photodetachment cross sections of Cl and Br. Phys Rev A 14(1):345–348

    Google Scholar 

  • Mann I, Pellinen-Wannberg A, Murad E, Popova O, Meyer-Vernet N, Rosenberg M, Mukai T, Czechowski A, Mukai S, Safrankova J, Nemecek Z (2011) Dusty plasma effects in near earth space and interplanetary medium. Space Sci Rev 161(1–4):1–47

    Google Scholar 

  • Markovich G, Pollack S, Giniger R, Cheshnovsky O (1994) Photoelectron spectroscopy of Cl, Br, and I solvated in water clusters. J Chem Phys 101(11):9344–9363

    Google Scholar 

  • Maroulis G, Thakkar AJ (1990) Polarizabilities and hyperpolarizabilities of carbon dioxide. J Chem Phys 93(6):4164–4171. doi:10.1063/1.458749

    Google Scholar 

  • McClintock WE, Snow M, Woods TN (2005) Solar stellar irradiance comparison experiment II (SOLSTICE II): pre-Launch and On-orbit calibrations. Sol Phys 230(1–2):259–294

    Google Scholar 

  • McFarland M, Albritton DL, Fehsenfeld FC, Ferguson EE, Schmeltekopf AL (1973) Flow-drift technique for ion mobility and ion-molecule reaction rate constant measurements. II. Positive ion reactions of N+, O+, and H2 + with O2 and O+ with N2 from thermal to ~2 eV. J Chem Phys 59(12):6620–6628

    Google Scholar 

  • McFarland M, Albritton DL, Fehsenfeld FC, Ferguson EE, Schmeltekopf AL (1974) Energy dependence and branching ratio of the N2 + +O reaction. J Geophys Res 79(19):2925–2926

    Google Scholar 

  • Mechtly EA (1974) Accuracy of rocket measurements of lower ionosphere electron concentrations. Radio Sci 9(3):373–378

    Google Scholar 

  • Megner L, Siskind D, Rapp M, Gumbel J (2008) Global and temporal distribution of meteoric smoke; a 2d simulation study. J Geophys Res 113(3):D03202. doi:10.1029/2007JD009054

    Google Scholar 

  • Meister J, Eberhardt P, Herrmann U, Kopp E, Hidalgo MA, Sechrist CF Jr (1978) D-region ion composition during the winter anomaly campaign on January 8, 1977. Space Res 18:155–158

    Google Scholar 

  • Meot-Ner M (2005) The ionic hydrogen bond. Chem Rev 105(1):213–284

    Google Scholar 

  • Midey AJ, Viggiano AA (1999) Rate constants for the reaction of O2 + with NO from 300 to 1400 K. J Chem Phys 110(22):10746–10748

    Google Scholar 

  • Midey AJ, Miller TM, Viggiano AA (2004) Reactions of N+, N2 +, and N3 + with NO from 300 to 1400 K. J Chem Phys 121(14):6822–6829. doi:10.1063/1.1792232

    Google Scholar 

  • Midey A, Dotan I, Viggiano AA (2008) Temperature Dependences for the Reactions of O and O2 with O2(a1Δg) from 200 to 700 K. J Phys Chem A 112(14):3040–3045. doi:10.1021/jp710539s

    Google Scholar 

  • Miller TM, Shuman NS, Viggiano AA (2012) Behavior of rate coefficients for ion–ion mutual neutralization, 300–550 K. J Chem Phys 136(20):204306. doi:10.1063/1.4720499

    Google Scholar 

  • Morris RA, Viggiano AA, Paulson JF (1990) Branching ratios and rate constants for reactions of 16O- and 18O with N2O and 14N15N16O. J Chem Phys 92(6):3448–3452

    Google Scholar 

  • Moseley JT, Cosby PC, Bennett RA, Peterson JR (1975) Photodissociation and photodetachment of molecular negative ions. I. Ions formed in CO2/H2O mixtures. J Chem Phys 62(12):4826–4834

    Google Scholar 

  • Narcisi RS (1967) Ion composition of the mesosphere. Space Res 7:186–196

    Google Scholar 

  • Narcisi RS, Bailey AD (1965) Mass spectrometric measurements of positive ions at altitudes from 64 to 112 Kilometers. J Geophys Res 70(15):3687–3700

    Google Scholar 

  • Narcisi RS, Bailey AD, Della Lucca L, Sherman C, Thomas DM (1971) Mass spectrometric measurements of negative ions in the D- and lower E-regions. J Atmos Terr Phys 33(8):1147–1159

    Google Scholar 

  • Narcisi RS, Bailey AD, Wlodyka LE, Philbrick CR (1972a) Ion composition measurements in the lower ionosphere during the November 1966 and March 1970 solar eclipses. J Atmos Terr Phys 34(4):647–658

    Google Scholar 

  • Narcisi RS, Sherman C, Philbrick CR, Thomas DM, Bailey AD, Wlodyka LE, Wlodyka RA, Baker D, Federico G (1972b) Negative ion composition of the D- and E-regions during a PCA. Solar Partical Event of November 1969. In: James C. Ulwick (Ed.) Proceedings of the COSPAR Symposium. Air Force Cambridge Research Laboratories, Bedford, MA, pp 411–419

  • Narcisi RS, Sherman C, Wlodyka LE, Ulwick JC (1974) Ion composition in an IBC class II aurora: 1. Measurements. J Geophys Res 79(19):2843–2847

    Google Scholar 

  • Narcisi R, Bailey A, Federico G, Wlodyka L (1983) Positive and negative ion composition measurements in the D- and E-regions during the 26 February 1979 solar eclipse. J Atmos Terr Phys 45(7):461–478

    Google Scholar 

  • Neau A, Al Khalili A, Rosén S, Le Padellec A, Derkatch AM, Shi W, Vikor L, Larsson M, Semaniak J, Thomas R, Nagard MB, Andersson K, Danared H, af Ugglas M (2000) Dissociative recombination of D3O+ and H3O+: absolute cross sections and branching ratios. J Chem Phys 113(5):1762–1770

    Google Scholar 

  • Newman DB, Ferraro AJ (1976) Amplitude distributions of partially reflected signals from the mid-latitude D region. J Geophys Res 81(13):2442–2444

    Google Scholar 

  • O’Keefe A, Mauclaire G, Parent D, Bowers MT (1986) Product energy disposal in the reaction of N+(3P) with O2(X3Σ). J Chem Phys 84(1):215–219

    Google Scholar 

  • Öjekull J, Andersson PU, Någård MB, Pettersson JBC, Marković N, Derkatch AM, Neau A, Al Khalili A, Rosén S, Larsson M, Semaniak J, Danared H, Källberg A, Österdahl F, af Ugglas M (2007) Dissociative recombination of H+(H2O)3 and D+(D2O)3 water cluster ions with electrons: cross sections and branching ratios. J Chem Phys 127(19):194301. doi:10.1063/1.2803901

    Google Scholar 

  • Öjekull J, Andersson PU, Pettersson JBC, Marković N, Thomas RD, Al Khalili A, Ehlerding A, Österdahl F, Af Ugglas M, Larsson M, Danared H, Källberg A (2008) Dissociative recombination of water cluster ions with free electrons: Cross sections and branching ratios. J Chem Phys 128(4):044311–044311-9. doi:10.1063/1.2823062

    Google Scholar 

  • Olney TN, Cann NM, Cooper G, Brion CE (1997) Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chem Phys 223(1):59–98

    Google Scholar 

  • Otto R, von Zastrow A, Best T, Wester R (2013) Internal state thermometry of cold trapped molecular anions. Phys Chem Chem Phys 15(2):612–618. doi:10.1039/C2CP43186F

    Google Scholar 

  • Pack JL, Phelps AV (1966) Electron Attachment and Detachment. II. Mixtures of O2 and CO2 and of O2 and H2O. J Chem Phys 45(11):4316–4329

    Google Scholar 

  • Parkes DA (1971) Electron attachment and negative ion-molecule reactions in pure oxygen. Trans Faraday Soc 67:711–729. doi:10.1039/TF9716700711

    Google Scholar 

  • Paulsen DE, Huffman RE, Larrabee JC (1972) Improved photoionization rates of O2(1Δg) in the D region. Radio Sci 7(1):51–55

    Google Scholar 

  • Paulson JF, Dale F (1982) Reactions of OH ·H2O with NO2. J Chem Phys 77(7):4006–4008

    Google Scholar 

  • Pavlov AV (2003) New method in computer simulations of electron and ion densities and temperatures in the plasmasphere and low-latitude ionosphere. Ann Geophys 21(7):1601–1628

    Google Scholar 

  • Pavlov AV (2011) Vibrationally excited N2 and O2 in the upper atmosphere: a review. Geomag Aeron 51(2):143–169. doi:10.1134/S0016793211020149

    Google Scholar 

  • Pavlov AV (2012) Ion Chemistry of the Ionosphere at E- and F-region Altitudes: a Review. Surv Geophys 33(5):1133–1172. doi:10.1007/s10712-012-9189-8

    Google Scholar 

  • Pavlov AV, Pavlova NM (2005) Causes of the mid-latitude NmF2 winter anomaly at solar maximum. J Atmos Sol Terr Phys 67(10):862–877

    Google Scholar 

  • Pavlov AV, Pavlova NM (2010) Effect of solar radiation refraction on the Zenith Angle and times of the sunrise and sunset in the atmosphere. Geomag Aeron 50(3):228–233. doi:10.1134/S001679321002009X

    Google Scholar 

  • Pavlov AV, Pavlova NM (2013) Comparison of NmE measured by the Boulder ionosonde with model predictions near the spring equinox. J Atmos Sol Terr Phys 102:39–47. doi:10.1016/j.jastp.2013.05.006

    Google Scholar 

  • Pavlov AV, Pavlova NM, Makarenko SF (2010) A statistical study of the mid-latitude NmF2 winter anomaly. Adv Space Res 45(3):374–385. doi:10.1016/j.asr.2009.09.003

    Google Scholar 

  • Payzant JD, Kebarle P (1972) Kinetics of reactions leading to O2 (H2O)n in moist oxygen. J Chem Phys 56(7):3482–3487

    Google Scholar 

  • Payzant JD, Cunningham AJ, Kebarle P (1972) Kinetics and rate constants of reactions leading to hydration of NO2 , and NO3 , in gaseous oxygen, argon, and helium containing traces of water. Can J Chem 50(14):2230–2236

    Google Scholar 

  • Petrignani A, Andersson PU, Pettersson JBC, Thomas RD, Hellberg F, Ehlerding A, Larsson M, van der Zande WJ (2005) Dissociative recombination of the weakly bound NO-dimer cation: cross sections and three-body dynamics. J Chem Phys 123(19):194306–194306-11. doi:10.1063/1.2116927

    Google Scholar 

  • Pfister W (1967) Auroral investigations by means of rockets. Space Sci Rev 7(5–6):642–688

    Google Scholar 

  • Phelps AV (1969) Laboratory studies of electron attachment and detachment processes of aeronomic interest. Can J Chem 47(10):1783–1793. doi:10.1139/v69-289

    Google Scholar 

  • Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(12):1468. doi:10.1029/2002JA009430

    Google Scholar 

  • Poutsma JC, Midey AJ, Viggiano AA (2006) Absolute rate coefficients for the reactions of O2  + N(4S3/2) and O2  + O(3P) at 298 K in a selected-ion flow tube instrument. J Chem Phys 124(7):074301

    Google Scholar 

  • Radzig AA, Smirnov BV (1985) Reference data on atoms, molecules and ions. Springer, Berlin

    Google Scholar 

  • Rakshit AB, Warneck P (1980) A drift chamber study of the formation of water cluster ions in oxygen. J Chem Phys 73(10):5074–5080

    Google Scholar 

  • Rangwala SA, Krishnakumar E, Kumar SV (2003) Dissociative-electron-attachment cross sections: a comparative study of NO2 and O3. Phys Rev A 68(5):052710. doi:10.1103/PhysRevA.68.052710

    Google Scholar 

  • Rapp M, Thomas GE (2006) Modeling the microphysics of mesospheric ice particles – assessment of current capabilities and basic sensitivities. J Atmos Sol Terr Phys 68(7):715–744

    Google Scholar 

  • Rapp M, Strelnikova I, Strelnikov B, Hoffmann P, Friedrich M, Gumbel J, Megner L, Hoppe U-P, Robertson S, Knappmiller S, Mareile W, Daniel RM (2010) Rocket-borne in situ measurements of meteor smoke: Charging properties and implications for seasonal variation. J Geophys Res 115(1):D00I16. doi:10.1029/2009JD012725

    Google Scholar 

  • Ratcliffe JA (1972) An introduction to the ionosphere and magnetosphere. Cambridge Univerity Press, Cambridge

    Google Scholar 

  • Reddmann T, Uhl R (2003) The H Lyman-α actinic flux in the middle atmosphere. Atmos Chem Phys 3(1):225–231

    Google Scholar 

  • Reid GC (1977) The production of water-cluster positive ions in the quiet daytime D region. Plan Space Sci 25(3):275–290

    Google Scholar 

  • Reid GC (1990) Ice particles and electron “bite-outs” at the summer polar mesopause. J Geophys Res 95(D9):13891–13896

    Google Scholar 

  • Relph RA, Bopp JC, Johnson MA, Viggiano AA (2008) Argon cluster-mediated isolation and vibrational spectra of peroxy and nominally D3h isomers of CO3 and NO3 . J Chem Phys 129(6):064305. doi:10.1063/1.2958223

    Google Scholar 

  • Richards PG, Fennelly JA, Torr DG (1994) EUVAC: a solar EUV flux model for aeronomical calculations. J Geophys Res 99(5):8981–8986

    Google Scholar 

  • Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002) Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem Rev 102(1):231–282. doi:10.1021/cr990044u

    Google Scholar 

  • Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Academic Press, New York

    Google Scholar 

  • Roche AE, Goodyear CC (1969) Electron detachment from negative oxygen ions at beam energies in the range 3 to 100 eV. J Phys B 2(2):191–200

    Google Scholar 

  • Rodger CJ, Clilverd MA, Thomson NR, Gamble RJ, Seppälä A, Turunen E, Meredith NP, Parrot M, Sauvaud J-A, Berthelier J–J (2007) Radiation belt electron precipitation into the atmosphere: recovery from a geomagnetic storm. J Geophys Res 112(11):A11307. doi:10.1029/2007JA012383

    Google Scholar 

  • Roehl CM, Snodgrass JT, Deakyne CA, Bowers MT (1991) Photodissociation of CO3 ·H2O – Observation of the O·H2O + CO2 product channel. J Chem Phys 94(10):6546–6552

    Google Scholar 

  • Rottman G, Woods T, Snow M, Detoma G (2001) The solar cycle variation in ultraviolet irradiance. Adv Space Res 27(12):1927–1932

    Google Scholar 

  • Ruscic B, Feller D, Dixon DA, Peterson KA, Harding LB, Asher RL, Wagner AF (2001) Evidence for a lower enthalpy of formation of hydroxyl radical and a lower gas-phase bond dissociation energy of water. J Phys Chem A 105(1):1–4

    Google Scholar 

  • Sant’Anna MM, Schlachter AS, Öhrwall G, Stolte WC, Lindle DW, McLaughlin BM (2011) K-Shell X-Ray Spectroscopy of Atomic Nitrogen. Phys Rev Lett 107(3):033001. doi:10.1103/PhysRevLett.107.033001

    Google Scholar 

  • Schmidt H, Brasseur GP, Charron M, Manzini E, Giorgetta MA, Diehl T, Fomichev VI, Kinnison D, Marsh D, Walters S (2006) The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J Clim 19(16):3903–3931. doi:10.1175/JCLI3829.1

    Google Scholar 

  • Schulte P, Arnold F (1992) Detection of upper atmospheric negatively charged microclusters by a rocket-borne mass spectrometer. Geophys Res Lett 19(23):2297–2300

    Google Scholar 

  • Schultz RH, Armentrout PB (1991a) Reactions of N2 + and N4 + with O2 from thermal to 20 eV center of mass. J Chem Phys 95(1):121–129

    Google Scholar 

  • Schultz RH, Armentrout PB (1991b) Reactions of N4 + with rare gases from thermal to 10 eV center-of- mass energy: collision-induced dissociation, charge transfer and ligand exchange. Int J Mass Spectrom Ion Process 107(1):29–48

    Google Scholar 

  • Schunk RW, Nagy AF (2009) Ionospheres. Physics, plasma physics, and chemistry. University Press, Cambridge

    Google Scholar 

  • Scott GBI, Fairley DA, Freeman CG, McEwan MJ, Anicich VG (1998) Gas-phase reactions of some positive ions with atomic and molecular nitrogen. J Chem Phys 109(20):9010–9014

    Google Scholar 

  • Sechrist CF (1974) Comparisons of techniques for measurement of D-region electron densities. Radio Sci 9(2):137–149

    Google Scholar 

  • Sheehan CH, St.-Maurice J-P (2004) Dissociative recombination of N2 +, O2 +, and NO+: rate coefficients for ground state and vibrationally excited ions. J Geophys Res 109(3):3302. doi:10.1029/2003JA010132

    Google Scholar 

  • Sherwood CR, Hanold KA, Garner MC, Strong KM, Continetti RE (1996) Translational spectroscopy studies of the photodissociation dynamics of O4 . J Chem Phys 105(24):10803–10811. doi:10.1063/1.472888

    Google Scholar 

  • Showen RL, Slingeland A (1998) Measuring lightning-induced ionospheric effects with incoherent scatter radar or with cross-modulation. J Atmos Sol-Terr Phys 60(7–9):951–956

    Google Scholar 

  • Shuman NS, Miller TM, Viggiano AA (2012) Kinetics of electron attachment to OH and HNO3 and mutual neutralization of Ar+ with NO2 and NO3 at 300 and 500 K. J Chem Phys 136(12):124307. doi:10.1063/1.3694876

    Google Scholar 

  • Sieck LW, Herron JT, Green DS (2000) Chemical kinetics database and predictive schemes for humid air plasma chemistry. Part I: positive ion-molecule reactions. Plasma Chem Plasma Process 20(2):235–258

    Google Scholar 

  • Sinnhuber M, Nieder H, Wieters N (2012) Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv Geophys 33(6):1281–1334. doi:10.1007/s10712-012-9201-3

    Google Scholar 

  • Smith D, Church MJ (1976) Binary ion–ion recombination coefficients determined in a flowing afterglow plasma. Int J Mass Spectrom Ion Phys 19(2):185–200

    Google Scholar 

  • Smith D, Church MJ (1977) Ion-ion recombination rates in the earth’s atmosphere. Plan Space Sci 25(5):433–439

    Google Scholar 

  • Smith GP, Lee LC (1978) Photodissociation of atmospheric positive ions. II: 3500–8600 Å. J Chem Phys 69(12):5393–5399

    Google Scholar 

  • Smith FL, Smith C (1972) Numerical evaluation of Chapman’s grazing incidence integral ch(X, χ). J Geophys Res 77(19):3592–3597

    Google Scholar 

  • Smith GP, Cosby PC, Moseley JT (1977) Photodissociation of atmospheric positive ions. I. 5300-6700 Å. J Chem Phys 67(8):3818–3828

    Google Scholar 

  • Smith GP, Lee LC, Cosby PC, Peterson JR, Moseley JT (1978a) Photodissociation and photodetachment of molecular negative ions. V - Atmospheric ions from 7000 to 8400 A. J Chem Phys 68(8):3818–3822

    Google Scholar 

  • Smith D, Adams NG, Miller TM (1978b) A laboratory study of the reactions of N+, N2 +, N3 +, N4 +, O+, O2 +, and NO+ ions with several molecules at 300 K. J Chem Phys 69(1):308–318

    Google Scholar 

  • Smith GP, Lee LC, Moseley JT (1979a) Photodissociation and photodetachment of molecular negative ions. VII - Ions formed in CO2/O2/H2O mixtures, 3500-5300 Å. J Chem Phys 71(10):4034–4041

    Google Scholar 

  • Smith GP, Lee LC, Cosby PC (1979b) Photodissociation and photodetachment of molecular negative ions. VIII. Nitrogen oxides and hydrates, 3500-8250 Å. J Chem Phys 71(11):4464–4470

    Google Scholar 

  • Snodgrass JT, Roehl CM, van Koppen PAM, Palke WE, Bowers MT (1990) Photodissociation of CO3 - Product kinetic energy measurements as a probe of excited state potential surfaces and dissociation dynamics. J Chem Phys 92(10):5935–5943

    Google Scholar 

  • Snuggs RM, Volz DJ, Gatland IR, Schummers JH, Martin DW, McDaniel EW (1971) Ion-molecule reactions between O and O2 at thermal energies and above. Phys Rev A 3(1):487–493

    Google Scholar 

  • Sodha MS, Misra S, Mishra SK, Dixit A (2011) Kinetics of polar mesospheric plasma layers: comparison of theoretical results with observations. Phys Plasmas 18(8):083708. doi:10.1063/1.3624758

    Google Scholar 

  • Solomon SC, Qian L (2005) Solar extreme-ultraviolet irradiance for general circulation models. J Geophys Res 110(10):A10306. doi:10.1029/2005JA011160

    Google Scholar 

  • Sørensen Ø, Veseth L (1995) Many-body calculations of photodetachment cross sections of negative atomic and diatomic ions. Phys Scr 52(3):299–308

    Google Scholar 

  • Squires RR (1992) Gas-phase thermochemical properties of the bicarbonate and bisulfite ions. Int J Mass Spectrom 117(1):565–600

    Google Scholar 

  • Stephan AW, Meier RR, Dymond KF, Budzien SA, McCoy RP (2003) Quenching rate coefficients for O+(2P) derived from middle ultraviolet airglow. J Geophys Res 108(1):SIA 8-1. CiteID 1034. doi:10.1029/2002JA009540

  • St-Maurice J-P, Torr OG (1978) Nonthermal rate coefficients in the ionosphere: the reaction of O+ with N2, O2 and NO. J Geophys Res 83(3):969–977

    Google Scholar 

  • Stolte WC, He ZX, Cutler JN, Lu Y, Samson JAR (1998) Dissociative photoionization cross sections of N2 and O2 from 100 to 800 eV. At Data Nucl Data Tables 69(1):171–179

    Google Scholar 

  • Strickland DJ, Bishop J, Evans JS, Majeed T, Shen PM, Cox RJ, Link R, Huffman RE (1999) Atmospheric ultraviolet radiance integrated code (AURIC): theory, software architecture, inputs, and selected results. J Quant Spectrosc Radiat Transfer 62(6):689–742

    Google Scholar 

  • Strobel DF (1978) Parameterization of the atmospheric heating rate from 15 to 120 km due to O2 and O3 absorption of solar radiation. J Geophys Res 83(12):6225–6230

    Google Scholar 

  • Strobel DF, Young TR, Meier RR, Coffey TP, Ali AW (1974) The nighttime ionosphere: e region and lower F region. J Geophys Res 79(22):3171–3178

    Google Scholar 

  • Su T (1988) Erratum: trajectory calculations of ion-polar molecule capture rate constants at low temperatures. J Chem Phys 89(8):5355

    Google Scholar 

  • Su T, Chesnavich WJ (1982) Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. J Chem Phys 76(10):5183–5185

    Google Scholar 

  • Summers ME, Siskind DE (1999) Surface recombination of O and H2 on meteoric dust as a source of mesospheric water vapor. Geophys Res Lett 26(13):1837–1840

    Google Scholar 

  • Swider W, Narcisi RS (1975) A study of the nighttime D region during a PCA event. J Geophys Res 80(4):655–664

    Google Scholar 

  • Thomas GE (1991) Mesospheric clouds and the physics of the mesopause region. Rev Geophys 29(4):553–575

    Google Scholar 

  • Thomas L, Bowman MR (1986) A study of pre-sunrise changes in the negative ions and electrons in the D-region. Ann Geophys 4(3):219–227

    Google Scholar 

  • Thomas GE, Stamnes K (1999) Radiative transfer in the atmosphere and ocean. Cambridge University Press, New York

    Google Scholar 

  • Tiernan TO, Wu RLC (1978) Thermochemical data for molecular negative ions from collisional–dissociation threshold. Adv Mass Spectrom 7A:136–142

    Google Scholar 

  • Titheridge JE (1988) An approximate form for the Chapman grazing incidence function. J Atmos Sol Terr Phys 50(8):699–701

    Google Scholar 

  • Troe J (1979) Predictive possibilities of unimolecular rate theory. J Phys Chem 83(1):114–126. doi:10.1021/j100464a019

    Google Scholar 

  • Troe J (2005) Temperature and pressure dependence of ion?molecule association and dissociation reactions: the N2 ++N2 (+M) → N4 + (+M) reaction. Phys Chem Chem Phys 7(7):1560–1567

    Google Scholar 

  • Turco RP (1977) On the formation and destruction of chlorine negative ions in the D region. J Geophys Res 82(25):3585–3592

    Google Scholar 

  • Turco RP, Sechrist CF Jr (1972) An investigation of the ionospheric D region at sunrise: 2, estimation of some photodetachment rates. Radio Sci 7(7):717–723

    Google Scholar 

  • Turunen E, Matveinen H, Tolvanen J, Ranta H (1996) D-region ion chemistry model. In: Schunk RW (ed) Handbook of ionospheric models. Utah State University, Utah, pp 1–25

    Google Scholar 

  • Van Doren JM, Viggiano AA, Morris RA, Miller AES, Miller TM, Paulson JF, Deakyne CA, Michels HH, Montgomery JA Jr (1993) Experimental and theoretical study of the reaction of HO with NO. J Chem Phys 98(10):7940–7950

    Google Scholar 

  • Van Doren JM, Miller TM, Williams S, Viggiano AA (2003) Direct measurement of the thermal rate coefficient for electron attachment to ozone in the gas phase, 300-550 K: implications for the Ionosphere. Phys Rev Lett 91(22):223201. doi:10.1103/PhysRevLett.91.223201

    Google Scholar 

  • Van Doren JM, Williams S, Midey AJ, Miller TM, Viggiano AA (2005) Temperature dependence of the oxide ion/ozone reaction in the gas phase. Int J Mass Spectrom 241(2–3):185–188

    Google Scholar 

  • Vaste OA (1993) Noctilucent clouds. J Atmosph Terr Phys 55(2):133–143

    Google Scholar 

  • Verronen PT, Seppälä A, Clilverd MA, Rodger CJ, Kyrölä E, Enell C-F, Ulich T, Turunen E (2005) Diurnal variation of ozone depletion during the October-November 2003 solar proton events. J Geophys Res 110(9):A09S32. doi:10.1029/2004JA010932

  • Vestal ML, Mauclaire GH (1977) Photodissociation of negative ions formed in CO2 and CO2/O2 mixtures. J Chem Phys 67(8):3758–3766

    Google Scholar 

  • Viggiano AA (1984) Three-body ion-molecule association rate coefficients as a function of temperature and cluster size: NO3 (HNO3)n + HCl \( \underrightarrow {\text{M}}\) NO3 (HNO3)n(HCl). J Chem Phys 81(6):2639–2645

    Google Scholar 

  • Viggiano AA, Paulson JF (1983) Temperature dependence of associative detachment reactions. J Chem Phys 79(5):2241–2245

    Google Scholar 

  • Viggiano AA, Arnold F, Fahey DW, Fehsenfeld FC, Ferguson EE (1982) Silicon negative ion chemistry in the atmosphere- in situ and laboratory measurements. Plan Space Sci 30(5):499–506

    Google Scholar 

  • Viggiano AA, Morris RA, Paulson JF (1989) Temperature dependences of rate constants for reactions of CO4 with NO and SO2. J Chem Phys 91(9):5855–5856

    Google Scholar 

  • Viggiano AA, Morris RA, Deakyne CA, Dale F, Paulson JF (1991) Effects of hydration on reactions of oxide hydrate [O(H2O)n (n = 0-2)]. 2. Reactions with hydrogen and deuterium. J Phys Chem 95(9):3644–3647

    Google Scholar 

  • Viggiano AA, Knighton WB, Williams S, Arnold ST, Midey AJ, Dotan I (2003) A reexamination of the temperature dependence of the reaction of N+ with O2. Int J Mass Spectrom 223–224:397–402

    Google Scholar 

  • Viggiano AA, Midey AJ, Ehlerding A (2006) Kinetics of the reactions of ONOO with small molecules. Int J Mass Spectrom 255–256(1):65–70

    Google Scholar 

  • Viggiano AA, Midey A, Eyet N, Bierbaum VM, Troe J (2009) Dissociative excitation transfer in the reaction of O2(a1Δg) with OH(H2O)1,2 clusters. J Chem Phys 131(9):094303. doi:10.1063/1.3212839

    Google Scholar 

  • Vondrak T, Plane JMC, Broadley S, Janches D (2008) A chemical model of meteoric ablation. Atmos Chem Phys 8(23):7015–7031

    Google Scholar 

  • Wang X-B, Xantheas SS (2011) Photodetachment of isolated bicarbonate anion: electron binding energy of HCO3 . J Phys Chem Lett 2(10):1204–1210

    Google Scholar 

  • Wang LJ, Woo SB, Helmy EM (1987) Laser photodetachment of O3 . Phys Rev A 35(2):759–763

    Google Scholar 

  • Wang X-B, Yang X, Wang L-S, Nicholas JB (2002) Photodetachment and theoretical study of free and water-solvated nitrate anions, NO3 (H2O)n (n = 0–6). J Chem Phys 116(2):561–570

    Google Scholar 

  • Watanabe K, Matsunaga FM, Sakai H (1967) Absorption Coefficient and Photoionization Yield of NO in the Region 580-1350 A. Appl Opt 6(3):391–396

    Google Scholar 

  • Woo SB, Helmy EM, Mauk PH, Paszek AP (1981) Wide-range absolutephotodetachment photodetachment spectrum of NO2 . Phys Rev A 24(3):1380–1390

    Google Scholar 

  • Woods TN (2008) Recent advances in observations and modeling of the solar ultraviolet and X-ray spectral irradiance. Adv Space Res 42(5):895–902

    Google Scholar 

  • Woods TN, Tobiska WK, Rottman GJ, Worden JR (2000) Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations. J Geophys Res 105(12):27195–27216

    Google Scholar 

  • Wroblewski T, Gazda E, Mechlinska-Drewko J, Karwasz GP (2001) Swarm experiment on ionized water clusters. Int J Mass Spectrom 207(1–2):97–110

    Google Scholar 

  • Ye L, Cheng H-P (1998) A quantum molecular dynamics study of the properties of NO+(H2O)n clusters. J Chem Phys 108(5):2015–2023

    Google Scholar 

  • Yousfi M, Hennad A, Eichwald O (1998) Improved Monte Carlo method for ion transport in ion- molecule asymmetric systems at high electric fields. J Appl Phys 84(1):107–114

    Google Scholar 

  • Zbinden PA, Hidalgo MA, Eberhahdt P, Geiss J (1975) Mass spectrometer measurements of the positive ion composition in the D- and E-regions of the ionosphere. Plan Space Sci 23(12):1621–1642

    Google Scholar 

  • Zeippen CJ (1987) Improved radiative transition probabilities for O II forbidden lines. Astron Astrophys 173(2):410–414

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the referees for their comments on the paper, which have assisted in improving the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, A.V. Photochemistry of Ions at D-region Altitudes of the Ionosphere: A Review. Surv Geophys 35, 259–334 (2014). https://doi.org/10.1007/s10712-013-9253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9253-z

Keywords

Navigation