Skip to main content
Log in

An Overview of Thunderstorm-Related Research on the Atmospheric Electric Field, Schumann Resonances, Sprites, and the Ionosphere at Sopron, Hungary

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This paper gives a resume of the papers written in English which (a) describe some of the recording instruments in use at the Nagycenk Observatory (NCK) since the International Geophysical Year (IGY 1957–1958) and up to the present time, (b) summarise the most important and different types of observations associated with thunderstorms which have been made there, and (c) discuss their various geophysical interpretations. The paper describes the main results which have been obtained in four areas of thunderstorm associated atmospheric and geospace science within the context of Earth system science. These relate to the following parameters of atmospheric electricity: the vertical electric potential gradient just above the Earth’s surface and the air–Earth current as well as the point discharge current, Schumann resonance (SR) signals of the Earth-ionosphere cavity at 8, 14 and 20 Hz, transient luminous events (TLEs), and some aspects of the behaviour of the ionosphere. Deductions from these data sets are concerned with the global lightning activity and the conductivity of the air, with diurnal, seasonal, annual and long-term variations of the SR amplitudes and resonant frequencies in terms of migrating thunderstorm centres, with transient SR excitations and with sprites and other TLEs, and with ionospheric disturbances. The paper closes with some thoughts on future research directions based on the observations at NCK and Sopron and the results achieved since the IGY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Ádám A (1980) Relation of mantle conductivity to physical conditions in the asthenosphere. Geophys Surv 4:43–55

    Article  Google Scholar 

  • Ádám A, Bencze P, Bór J, Heilig B, Kis A, Koppán A, Kovács K, Lemperger I, Märcz F, Martini D, Novák A, Sátori G, Szalai S, Szarka L, Verő J, Wesztergom V, Zieger B (2009) Geoelectromagnetism and the changing Earth. Acta Geod Geophys Hung 44(3):271–312

    Article  Google Scholar 

  • Ádám A, Szarka L (1995) Time and space relation of the ELF (AMT) signals and noise. Acta Geod Geophys Hung 30(2–4):241–256

    Google Scholar 

  • Ádám A, Szarka L (2011) Geoelectromagnetism. In: Gupta HK (ed) Encyclopedia of solid Earth geophysics. Springer, Dordrecht, pp 341–353

  • Aplin KL, Harrison RG (2003) Meteorological effects of the eclipse of 11 August 1999 in cloudy and clear conditions. Proc R Soc Lond Ser A 459:353–371

    Article  Google Scholar 

  • Beig G (2008) Global change induced trends in ion composition of the troposphere to the lower thermosphere. Ann Geophys 26:1181–1187

    Article  Google Scholar 

  • Bencze P (1963) The distribution of the quantities of charge transported by point discharge. Acta Tech Hung Acad Sci 43(3–4):289–292

    Google Scholar 

  • Bencze P (1966) The annual variation of the ratio of the quantities of negative to positive charge transported by point-discharge. Acta Geod Geophys Montan Acad Sci Hung 1(1–2):93–105

    Google Scholar 

  • Bencze P (1969) Seasonal variations of the virtual height of sporadic E h’Es at middle latitudes and its possible origin. Pure Appl Geophys 75:167–174

    Article  Google Scholar 

  • Bencze P (1983) On the origin of Es transparency. INAG Bull 12:40–41

    Google Scholar 

  • Bencze P (1987) Turbulence and aeronomical processes in the lower thermosphere. Acta Geod Geophys Montan Hung 22:251–274

    Google Scholar 

  • Bencze P, Holló L (1971) A study of the dependence of correlation between the occurrence of sporadic E and geomagnetic activity on period at middle latitudes. Acta Geod Geophys Montan Hung 6:271–277

    Google Scholar 

  • Bencze P (2001) Experimental study of atmospheric electricity and the ionosphere. In Geophysical Observatory Reports of the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, year 1994-1998, Sopron, Hungary: 145-160

  • Bencze P, Buresova D, Lastovicka J, Märcz F (2004) Behaviour of the F1 region, and Es and spread-F phenomena at European middle latitudes particularly under geomagnetic storm conditions. Ann Geophys 47(2/3):1131–1143

    Google Scholar 

  • Bencze P, Märcz F (1981) The geophysical observatory near Nagycenk, II. Atmospheric electric and ionospheric measurements. Acta Geodaet. Geophys. et Montanist Acad Sci Hung16 (2-4) 353-357

  • Bencze P, Szemerey Märcz F (1984) The measurement of the air–Earth current in the geophysical observatory near Nagycenk (Hungary). Acta Geod Geophys Montan Acad Sci Hung 19(3–4):347–352

    Google Scholar 

  • Bencze P, Wesztergom V (2007) Ground based monitoring of the Earth’s environment at Nagycenk Observatory (NCK). Acta Geod Geophys Hung 42(4):375–381

    Article  Google Scholar 

  • Betz HD, Schumann U, Laroche P (Eds.) (2009) Lightning: principles, instruments and applications, Springer, pp. 641

  • Bliokh PV, Nickolaenko AP, Filippov YuF (1980) Schumann resonances in the Earth-ionosphere cavity. Peter Peregrinus, London

    Google Scholar 

  • Bór J (2012) Optically perceptible characteristics of sprites observed in Central Europe in 2007–2009. J Atmos Sol Terr Phys. Published online doi:10.1016/j.jastp.2012.10.008

  • Bór J, Sátori G, and Betz HD (2009) Observation of TLEs in Central Europe from Hungary supported by LINET. In: Crosby NB, Huang T-Y, Rycroft MJ (eds) Coupling of thunderstorms and lightning discharges to near-Earth Space: Proceedings of the Workshop Corte (France), 23–27 June 2008, AIP Conference Proceedings Volume 1118, pp. 73–83, ISBN: 978-0-7354-0657-5, ISSN: 0094-243X, doi:10.1063/1.3137716

  • Box GEP, Jenkins GM (1976) Time series analysis, forecasting, and control. Holden-Day, San Francisco

    Google Scholar 

  • Chalmers JA (1967) Atmospheric electricity, 2nd edn. Pergamon, Oxford

    Google Scholar 

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res 108(D1):4005. doi:10.1029/2002JD002347

    Article  Google Scholar 

  • Chronis TG (2009) Investigating possible links between incoming cosmic ray fluxes and lightning activity over the United States. J Clim 22(21):5748

    Article  Google Scholar 

  • Crosby NB, Huang TY, Rycroft MJ (Eds), (2008) Coupling of thunderstorms and lightning discharges to near-Earth space: Proceedings of the workshop Corte (France), 23–27 June 2008, AIP conference proceedings Vol 1118, pp 73–83, ISBN: 978-0-7354-0657-5, ISSN: 0094-243X

  • Davis CJ, Johnson, CG (2005) Lightning-induced intensification of the ionospheric sporadic E layer. Nature 435. doi:10.1038/nature03638

  • Dwyer J, Smith D, Cummer S (2012) High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci Rev 167:1–64. doi:10.1007/s11214-012-9894-0

    Article  Google Scholar 

  • Fukunishi H, Takahashi Y, Sato M, Shono A, Fujito M, Watanabe Y (1997) Ground-based observations of ULF transients excited by strong lightning discharges producing elves and sprites. Geophys Res Lett 24(23):2973–2976. doi:10.1029/97GL03022

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC (1996) Further evidence for a global correlation of the Earth-ionosphere cavity resonances. Geophys Res Lett 23(20):2773

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC (1997) Global lightning and climate variability inferred from ELF magnetic field variations. Geophys Res Lett 24(19):2411

    Article  Google Scholar 

  • Füllekrug M, Fraser-Smith AC, Reising SC (1998) Ultra-slow tails of sprite-associated lightning flashes. Geophys Res Lett 25(18):3497

    Article  Google Scholar 

  • Füllekrug M, Sukhorukov AI (1999) The contribution of anisotropic conductivity in the ionosphere to lightning flash bearing deviations in the ELF/ULF range. Geophys Res Lett 26:1109–1112

    Article  Google Scholar 

  • Füllekrug M, Mareev EA, Rycroft MJ (eds) (2006) Sprites, elves and intense lightning discharges. Springer, Dordrecht

    Google Scholar 

  • Füllekrug M, Diver D, Pincon J-L, Phelps ADR, Bourdon A, Helling H, Blanc E, Honary F, Harrison RG, Sauvaud J-A, Renard J-B, Laster M, Rycroft M, Kosch M, Horne R, Soula S, Gaffet S (2012) Energetic charged particles above thunderclouds. Surv Geophys 34:1–41. doi:10.1007/s10712-0129205-z

    Article  Google Scholar 

  • Greenberg E, Price C, Yair Y, Ganot M, Bór J, Sátori G (2007) ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms. J Atmos Sol-Terr Phys 69(13):1569–1586

    Article  Google Scholar 

  • Gringel W, Käselau KH, Mühleisen R (1978) Recombination rates of small ions and their attachment to aerosol particles. Pure Appl Geophys 116:1101–1113

    Article  Google Scholar 

  • Harrison RG, Märcz F (2007) Heliospheric timescale identified in surface atmospheric electricity. Geophys Res Lett 34:L23816. doi:10.1029/2007GL031714

    Article  Google Scholar 

  • Harrison RG (2012) The Carnegie curve. Surv Geophys 34. doi:10.1007/s10712-012-9210-2

  • Huang E, Williams ER, Boldi R, Heckman S, Lyons WA, Taylor M, Nelson T, Wong C (1999) Criteria for sprites and elves based on Schumann resonance observations. J Geophys Res 104:16943–16964

    Article  Google Scholar 

  • Isräel H (1973) Atmospheric electricity, volume II: fields, charges, currents. Israel Program for Scientific Translations Ltd

  • Israelsson S, Tammet H (2001) Variation of fair weather atmospheric electricity at Marsta Observatory, Sweden, 1993–1998. J Atmos Sol Terr Phys 63:1693–1703

    Article  Google Scholar 

  • Johnston D (2003) Reflecting on Edward Teller’s life. Newsline 28(45):4–5

    Google Scholar 

  • Korte M, Lühr H, Förster M, Haak W, Bencze P (2001) Did the solar eclipse of August 11, 1999 show a geomagnetic effect? J Geophys Res 106:18563–18575

    Google Scholar 

  • Kumar VV, Parkinson ML, Dyson PL, Burns GL (2009) The effects of thunderstorm-generated atmospheric gravity waves on mid-latitude F-region drifts. J Atmos Sol-Terr Phys 71:1904–1915

    Article  Google Scholar 

  • Law J (1963) The ionisation of the atmosphere near the ground in fair weather. Q J Roy Meteorol Soc 89:107–121

    Article  Google Scholar 

  • Leblanc F, Aplin KL, Yair Y, Harrison RG, Lebreton JP, Blanc M (eds) (2008) Planetary atmospheric electricity. Springer, Dordrecht

    Google Scholar 

  • Lichtenberger J, Cs Ferencz, Bodnar L, Hamar D, Steinbach P (2008) Automatic whistler detector and analyser system: automatic whistler detector. J Geophys Res 113:A12201. doi:10.1029/JA013467

    Article  Google Scholar 

  • MacGorman DR, Rust WD (1998) The electrical nature of storms. Oxford Univ Press, New York

    Google Scholar 

  • Mach DM, Blakeslee RJ, Bateman MG (2011) Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. J Geophys Res 116:D05201. doi:10.1029/JD014462

    Article  Google Scholar 

  • Märcz F (1976) Links between atmospheric electricity and ionospheric absorption due to extraterrestrial influences. J Geophys Res 81:4566–4570

    Article  Google Scholar 

  • Märcz F (1978) Solar electron fluxes, increased geomagnetic activity and ionospheric absorption following selected flares. J. Geophys 45:91–100

    Google Scholar 

  • Märcz F (1997) Short-term changes in atmospheric electricity associated with Forbush decreases. J Atmos Terr Phys 59:975–982

    Article  Google Scholar 

  • Märcz F, Bencze P (1981) Variations of the atmospheric electric potential gradient at Nagycenk Observatory. Acta Geod Geophys Montan Acad Sci Hung 16(2–4):415–422

    Google Scholar 

  • Märcz F (1988) Geomagnetic activity and ionospheric absorption associated with high speed plasma streams. Ann Geophys 6(2):195–200

    Google Scholar 

  • Märcz F (1990) Atmospheric electricity and the 11-year solar cycle associated with QBO. Ann Geophys 8:525–530

    Google Scholar 

  • Märcz F (1991) Analysis of ionospheric absorption associated with interplanetary magnetic clouds. J Atmos Terr Phys 53(3/4):319–323

    Article  Google Scholar 

  • Märcz F (1992) Geomagnetic, ionospheric and cosmic ray variations around the passages of different magnetic clouds. Planet Space Sci 40(7):979–983

    Article  Google Scholar 

  • Märcz F (2001) Some results of analyses based on atmospheric electric and ionospheric data of previous Observatory reports. In: Geophysical Observatory reports of the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, year 1994–1998, Sopron, Hungary, pp 161–167

  • Märcz F, Bencze P (1998) Surplus of negative charge flow in point-discharge current as shown by variations on different time scales at Nagycenk station. J Atmos Sol-Terr Phys 60:1435–1443

    Article  Google Scholar 

  • Märcz F, Harrison RG (2003) Long-term changes in atmospheric electrical parameters observed at Nagycenk (Hungary) and the UK observatories at Eskdalemuir and Kew. Ann Geophys 21:2193–2200

    Article  Google Scholar 

  • Märcz F, Harrison RG (2005) Further signatures of long-term changes in atmospheric electrical parameters observed in Europe. Ann Geophys 23:1987–1995

    Article  Google Scholar 

  • Märcz F, Verő J (1977) Ionospheric absorption and Pc1-type micropulsations following enhanced geomagnetic activity. J Atmos Terr Phys 39:295–302

    Article  Google Scholar 

  • Marshall RA, Inan US, Neubert T, Hughes A, Sátori G, Bór J, Collier A, Allin TH (2005) Optocal observations geomagnetically conjugate to sprite-producing lightning discharges. Ann Geophys 23:2231–2237

    Article  Google Scholar 

  • Matsudo Y, Suzuki T, Hayakawa M, Yamashita K, Ando Y, Michimoto K, Koichiro M, Korepanov V (2007) Characteristics of Japanese winter sprites and their parent lightning as estimated by VHF lightning and ELF transients. J. Atmos Sol-Terr Phys 69:1431–1446. doi:10.1016/j.jastp.2007.05.002

    Article  Google Scholar 

  • Melnikov A, Price C, Sátori G, Füllekrug M (2004) Influence of solar terminator passages on Schumann resonance parameters. J Atmos Sol-Terr Phys 66:1187–1194

    Article  Google Scholar 

  • Neubert T, Allin TH, Blanc E, Farges T, Haldoupis C, Mika A, Soula S, Knutsson L, van der Velde O, Marshall RA, Inan U, Sátori G, Bór J, Hughes A, Collier A, Laursen S, Rasmussen IbL (2005) Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign. J Atmos Sol-Terr Phys 67:807–820

    Article  Google Scholar 

  • Neubert T. Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell CF, Turunen E, Bösinger T, Mika Á, Haldoupis C, Steiner RJ, van der Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Füllekrug, M, Verronen PT, Montanya J, Crosby N, (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29 (2):71–137. Springer, The Netherlands, ISSN: 0169-3298. doi:10.1007/s10712-008-9043-1

  • Nickolaenko AP, Sátori G, Zieger B, Rabinowicz LM, Kudintseva IG (1998) Parameters of global thunderstorm activity deduced from the long-term Schumann resonance records. J Atmos Sol-Terr Phys 60:387–399

    Article  Google Scholar 

  • Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth–ionosphere cavity. Kluwer, Dordrecht

    Google Scholar 

  • Nickolaenko AP, Hayakawa M, Hobara Y (2010) Q-bursts: natural ELF radio transients. Surv Geophys 31:409–425

    Article  Google Scholar 

  • Nickolaenko AP, Rabinowicz LM (1995) Study of the annual changes of global lightning distribution and frequency variations of the first Schumann resonance mode. J Atmos Terr Phys 57:1345–1348

    Article  Google Scholar 

  • Nicoll KA (2012) Measurements of atmospheric electricity aloft. Surv Geophys 33:991–1057

    Google Scholar 

  • Ondrášková A, Bór J, Ševčík S, Kostecký P, Rosenberg L (2008) Peculiar transient events in the Schumann resonance band and their possible explanation. J Atmos Sol-Terr Phys 70(6):937–946

    Article  Google Scholar 

  • Ondrášková A, Ševčík S, Kostecký P (2011) Decrease of Schumann resonance frequencies and changes in the effective lightning areas toward the solar cycle minimum of 2008–2009. J Atmos Sol-Terr Phys 73(4):534–543

    Article  Google Scholar 

  • Pasko VP (2006) Theoretical modelling of sprites and jets. In Fullekrug M, Mareev EA and Rycroft MJ (Eds.) Sprites, elves and intense lightning discharges, pp 253–311

  • Pasko VP, Yair Y, Kuo CL (2011) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci Rev. doi: 10.1007/s11214-011-9813-9

  • Pechony O, Price C, Nickolaenko AP (2007) Relative importance of the day-night asymmetry in Schumann resonance amplitude records. Radio Sci 42(2):RS2S10. doi:10.1029/2006RS003483

    Article  Google Scholar 

  • Pilipenko VA (2012) Impulsive coupling between the atmosphere and the ionosphere/magnetosphere. Space Sci Rev 168(1–4):533–550. doi:10.1007/s11214-011-9859-8

    Article  Google Scholar 

  • Pinto O, Williams ER (2011) Updating the science of atmospheric electricity. EOS Trans Am Geophys Union 92:470

    Article  Google Scholar 

  • Price C, Greenberg E, Yair Y, Sátori G, Bór J, Fukunishi H, Sato M, Israelovich P, Moalem M, Devir A, Levin Z, Joseph JH, Mayo I, Ziv B, Sternlieb A (2004) Ground-based detection of TLE-producing intense lightning during the MEIDEX mission on board the space shuttle Columbia. Geophys Res Lett 31:L20107. doi:10.1029/2004GL020711

    Article  Google Scholar 

  • Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, Cambridge

    Google Scholar 

  • Rycroft MJ (1965) Resonances of the Earth-ionosphere cavity observed at Cambridge, England. Radio Sci J Res NBS 69(D):1071–1081

    Google Scholar 

  • Rycroft MJ, Harrison RG, Nicoll KA, Mareev EA (2008) An overview of the Earth’s global electric circuit and atmospheric conductivity. Space Sci Rev 137:83–105

    Article  Google Scholar 

  • Rycroft MJ, Harrison RG (2012) Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit. Space Sci Rev 168 (1):363–384. ISSN 0038-6308. doi: 10.1007/s11214-011-9830-8

    Google Scholar 

  • Rycroft MJ, Nicoll KA, Aplin KL, Harrison RG (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Sol-Terr Phys. http://dx.doi.org/10.1016/j.jastp.2012.03.015

  • Rycroft MJ, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res 115:A00E37. doi:10.1029/2009JA014758

    Article  Google Scholar 

  • Sátori G (1996) Monitoring Schumann resonances—II. Daily and seasonal frequency variations. J Atmos Terr Phys 58:1483–1488

    Article  Google Scholar 

  • Sátori G, Lemperger I, Bór J (2007a) Modulation of annual and semiannual areal variation of global lightning on the 11-year Solar Cycle. In: Second international symposium on lightning physics and effects, Vienna, April 19 and 20. http://www.costp18-lightning.org/

  • Sátori G, Mushtak V, Williams E (2009) Schumann resonance signatures of global lightning activity. In Betz et al. (eds). Lightning: principles, instruments and applications. Springer, New York, pp 347–386

  • Sátori G, Mushtak V, Williams E, Nagy T (2011) Signature of global warming in global lightning position. In: Pinto O (ed) Proceeding of the 14th ICAE, Global Lightning and Climate. Rio de Janeiro, Brazíl, 2011.08.08-2011.08.12

  • Sátori G, Neska M, Williams E, Szendrői J (2007b) Signatures of the day-night asymmetry of the Earth-ionosphere cavity in high time resolution Schumann resonance records. Radio Sci 42:10. doi:10.1029/2006RS003483

    Article  Google Scholar 

  • Sátori G, Szendrői J, Verő J (1996) Monitoring Schumann resonances—I. Methodology. J Atmos Terr Phys 58:1475–1481

    Article  Google Scholar 

  • Sátori G, Williams ER, Mushtak V (2005) Response of the Earth-ionosphere cavity to the 11-year solar cycle in X-radiation. J Atmos Sol-Terr Phys 67:553–562

    Article  Google Scholar 

  • Sátori G, Williams E, Lemperger I (2009b) Variability of global lightning on the ENSO time scale. Atmos Res 91:500–507

    Article  Google Scholar 

  • Sátori G, Zieger (1996) Spectral characteristics of Schumann resonances observed in Central Europe. J Geophys Res 101:29,663-29,669

  • Sátori G, Zieger B (1998) Anomalous behaviour of Schumann resonances during the transition between 1995 and 1996. J Geophys Res 103:14,147-14,155

  • Sátori G, Zieger B (1999) El Niño related meridional oscillation of global lightning activity. Geophys Res Lett 26:1365–1368

    Article  Google Scholar 

  • Sátori G, Zieger B (2003) Areal Variations of the Worldwide Thunderstorm Activity on Different Time Scales as Shown by Schumann Resonances In: Serge Chauzy, Pierre Laroche (ed.) Proceeding of the 12th ICAE, Global Lightning and Climate. Versailles, France, 2003.06.09-2003.06.13.

  • Shindo T, Ishii M, Williams E (2011) Explaining unusual winter lightning in Japan. EOS Trans Am Geophys Union 92:424–425

    Article  Google Scholar 

  • Shvets A, Hayakawa M (2011) Global lightning activity on the basis of inversions of natural ELF electromagnetic data observed at multiple stations around the world. Surv Geophys 32:705–732

    Article  Google Scholar 

  • Shvets A, Hobara Y, Hayakawa M (2010) Variations of the global lightning distribution revealed from three-station Schumann resonance measurements. J Geophys Res 115:A12316. doi:10.1029/2010JA015851

    Article  Google Scholar 

  • Siingh D, Singh AK, Patel RP, Singh RP, Venadhar B, Mukherjee M (2008) Thunderstorms, lightning, sprites and magnetospheric whistler mode radio waves. Surv Geophys 29:499–551

    Article  Google Scholar 

  • Siingh D, Singh RP, Singh AK, Kulkarni MN, Gautam AS, Singh AK (2011) Solar activity, lightning and climate. Surv Geophys 32:659–703

    Article  Google Scholar 

  • Simpson JJ (2009) Current and future applications of 3-D global Earth-ionosphere models based on the full-vector Maxwell’s equations FDTD method. Surv Geophys 30:105–130

    Article  Google Scholar 

  • Soula S, van der Velde O, Montanya J, Huet P, Barthe C, Bór J (2011) Gigantic jets produced by an isolated tropical thunderstorm near Reunion Island. J Geophys Res 116: Paper D19103

  • Stringfellow MF (1974) Lightning incidence in Britain and the solar cycle. Nature 249:332–333

    Article  Google Scholar 

  • Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage—a missing link in solar climate relationship. J Atmos Terr Phys 59:1225–1232

    Article  Google Scholar 

  • Takeda M, Yamauchi M, Makino M, Owada T (2011) Initial effect of the Fukushima accident on atmospheric electricity. Geophys Res Lett 38:L15811. doi:10.1029/GL048511

    Article  Google Scholar 

  • Trakhtengerts VY, Rycroft MJ (2008) Whistler and Alfvén mode cyclotron masers in space. Cambridge University Press, Cambridge, p 354

    Book  Google Scholar 

  • van der Velde OA, Bór J, Li J, Cummer SA, Arnone E, Zanotti F, Füllekrug M, Haldoupis C, NaitAmor S, Farges T (2010) Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J Geophys Res 115:17

    Google Scholar 

  • Verő J (1972) On the determination of the magneto-telluric impedance tensor. Acta Geod Geophys Montan Hung 7:333–351

    Google Scholar 

  • Verő J (1996) Solar cycle effect on Pc3 geomagnetic pulsations. J Geophys Res 101:2461–2466

    Article  Google Scholar 

  • Verő J, Holló L, Bencze P, Märcz F (1997) Whistler ducts and geomagnetic pulsation resonant field line shells near L = 2—are they identical? J Atmos Sol-Terr Phys 59:1855–1863

    Article  Google Scholar 

  • Wesztergom V 2007) Description of the observatory. In: Geophysical Observatory Reports of the Geodetic and Geophysical Institute of the Hungarian Academy of Sciences, year 2005–2006, Sopron, Hungary, pp 11–13

  • Wesztergom V, Szendrői J (2001) Geophysical Observatory Reports of the Geodetic and Geophysical Institute of the Hungarian Academy of Sciences, year 1994–1998, Nagycenk Geophysical Observatory, IAGA code: NCK. Sopron, Hungary, p 351

  • Wesztergom V, Szendrői J (2007) Geophysical Observatory Reports of the Geodetic and Geophysical Institute of the Hungarian Academy of Sciences, year 2005-2006, Nagycenk Geophysical Observatory, IAGA code: NCK. Sopron, Hungary, p 204

  • Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature. Mon Weather Rev 122:1917–1929

    Article  Google Scholar 

  • Williams ER, Sátori G (2004) Lightning, thermodynamic and hydrological comparison of the two tropical chimneys. J Atmos Sol-Terr Phys 66:1213–1231

    Article  Google Scholar 

  • Williams E, Boldi R, Bór J, Sátori G, Price C, Greenberg E, Takahashi Y, Yamamoto K, Matsudo Y, Hobara Y, Hayakawa M, Chronis T, Anagnostou E, Smith DM, Lopez L (2006) Lightning flashes conducive to the production and escape of gamma radiation into space. J Geophys Res 111:D16209. doi:10.1029/2005JD006447

    Article  Google Scholar 

  • Williams ER, Lyons WA, Hobara Y, Mushtak VC, Asencio N, Boldi R, Bór J, Cummer SA, Greenberg E, Hayakawa M, Holzworth RH, Kotroni V, Li J, Morales C, Nelson TE, Price C, Russell B, Sato M, Sátori G, Shirahata K, Takahashi Y, Yamashita K (2009) Ground-based detection of sprites and their parent lightning flashes over Africa during the 2006 AMMA campaign. Q J R Meteorol Soc. doi:10.1002/qj.489

    Google Scholar 

  • Wilson RM (1987) Geomagnetic response to magnetic clouds. Planet Space Sci 35:329

    Article  Google Scholar 

  • Yair Y, Price C, Ziv B, Israelevich PL, Sentman DD, Sao-Sabbas FT, Devir AD, Sato M, Rodger CJ, Moalem M, Greenberg E, Yaron O (2005) Space shuttle observation of an unusual transient atmospheric emission. Geophys Res Lett 32:L02801. doi:10.1029/2004GL021551

    Article  Google Scholar 

  • Yair Y, Price C, Ganot M, Greenberg E, Yaniv R, Ziv B, Sherez Y, Devir A, Bór J, Sátori G (2009) Optical observations of transient luminous events associated with winter thunderstorms near the coast of Israel. Atmos Res 91(2–4):529–537

    Article  Google Scholar 

  • Yang H, Pasko VP (2006) Three-dimensional finite difference time domain modeling of the diurnal and seasonal variations of Schumann resonance parameters. Radio Sci 41:RS2S14. doi:10.1029/2005RS003402

    Google Scholar 

Download references

Acknowledgments

These research studies were supported by the Hungarian National Science Foundation, “OTKA” with the grants: K72474, T034309, T023111, T4395 and the Hungarian Space Office (TP201, TP224) as well as the American-Hungarian Joint Fund (JF.554) and the NATO (EST.CLG.980431). Michael Rycroft is most grateful for the welcome and kind hospitality which he received when visiting the Research Centre for Astronomy and Earth Sciences of the Geodetic and Geophysical Institute in Sopron during January 2012, and to the European Science Foundation in Strasbourg, France, for financial support of this visit through the TEA-IS (Thunderstorm Effects on the Atmosphere–Ionosphere System) Research Networking Programme led by Torsten Neubert, of the Danish Space Center in Copenhagen, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Sátori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sátori, G., Rycroft, M., Bencze, P. et al. An Overview of Thunderstorm-Related Research on the Atmospheric Electric Field, Schumann Resonances, Sprites, and the Ionosphere at Sopron, Hungary. Surv Geophys 34, 255–292 (2013). https://doi.org/10.1007/s10712-013-9222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9222-6

Keywords

Navigation