Skip to main content
Log in

Counting closed geodesics in globally hyperbolic maximal compact AdS 3-manifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We propose a definition for the length of closed geodesics in a globally hyperbolic maximal compact (GHMC) Anti-De Sitter manifold. We then prove that the number of closed geodesics of length less than R grows exponentially fast with R and the exponential growth rate is related to the critical exponent associated to the two hyperbolic surfaces coming from Mess parametrization. We get an equivalent of three results for quasi-Fuchsian manifolds in the GHMC setting: Bowen’s rigidity theorem of critical exponent, Sanders’ isolation theorem and McMullen’s examples lightening the behaviour of this exponent when the surfaces range over Teichmüller space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A property P is satisfied by most curves on \(S_0\) if there is \(\eta >0\) such that \(\frac{{{\mathrm{Card}}}\{ c\in {\mathcal {C}}\, |\, \ell _0(c)\le R \} \cap P }{{{\mathrm{Card}}}\{ c\in {\mathcal {C}}\, |\, \ell _0(c)\le R \}} =o(e^{-\eta R } )\).

  2. We replace \( \{ c\in {\mathcal {C}}\, |\, \ell _0(c)\le R \}\) by \(\{ c\in {\mathcal {C}}\, |\, \ell _0(c)+\ell _n(c)\le R \}\) in the previous definition.

  3. With Monclair, we propose a Lorentzian proof of the previous result independent of the one of Bishop Steger in [15].

  4. This follows from a small modifications of the arguments in [22].

  5. (Mapping class group is defined by \(MCG = Diff(S)/Diff_0(S) \), where \(Diff_0(S)\) is the group of diffeomorphisms isotopic to the identity).

References

  1. Benedetti, R., Bonsante, F.: Canonical Wick Rotations in 3-Dimensional Gravity. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  2. Barbot, T., Béguin, F., Zeghib, A.: Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on \({\rm AdS}^{3}\). Geom. Dedicata 126(1), 71–129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bers, L.: Uniformization, moduli, and Kleinian groups. Bull. Lond. Math. Soc. 4(3), 257–300 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bishop, C.J., Jones, P.W.: Hausdorff dimension and Kleinian groups. Acta Math. 179(1), 1–39 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonahon, F.: Bouts des variétés hyperboliques de dimension 3. (Ends of hyperbolic 3-dimensional manifolds). Ann. Math. 2(124), 71–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonahon, F.: The geometry of teichmüller space via geodesic currents. Invent. Math. 92, 139–162 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonahon, F.: Earthquakes on Riemann surfaces and on measured geodesic laminations. Trans. Am. Math. Soc. 330(1), 69–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bowen, R.: Hausdorff dimension of quasi-circles. Publications Mathématiques de l’IHÉS 50(1), 11–25 (1979)

    Article  MATH  Google Scholar 

  9. Benedetti, R., Petronio, C.: Lectures on Hyperbolic Geometry. Springer, Berlin (2012)

    MATH  Google Scholar 

  10. Bishop, C., Steger, T.: Three rigidity criteria for PSL(2, r). Bull. Am. Math. Soc. 24(1), 117–123 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burger, M.: Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank 2. Int. Math. Res. Not. 1993(7), 217–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cannon, J.W., Thurston, W.P.: Group invariant peano curves. Geom. Topol. 11(3), 1315–1355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diallo, B.: Métriques prescrites sur le bord du coeur convexe d’une variété anti-de Sitter globalement hyperbolique maximale compacte de dimension trois. Ph.D. thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier (2014)

  14. Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces. Astérisque 66 (1979)

  15. Glorieux, O., Monclair, D.: Critical exponent and Hausdorff dimension for quasi-Fuchsian AdS manifolds. preprint arXiv:1606.05512 (2016)

  16. Halpern, N.: A proof of the collar lemma. Bull. Lond. Math. Soc. 13(2), 141–144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herrera Jaramillo, J.A.: Intersection numbers in a hyperbolic surface. Ph.D. thesis, The University of Oklahoma (2013)

  18. Kerckhoff, S.P.: The Nielsen realization problem. Ann. Math. 117(2), 235–265 (1983)

  19. Kerckhoff, S.P.: Lines of minima in teichmüller space. Duke Math. J. 65(2), 187–213 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kifer, Y.: Large deviations, averaging and periodic orbits of dynamical systems. Commun. Math. Phys. 162(1), 33–46 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kassel, F., Kobayashi, T.: Discrete spectrum for non-Riemannian locally symmetric spaces. I. Construction and stability. Adv. Math. 287, 123–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knieper, G.: Das Wachstum der Äquivalenzklassen geschlossener Geodätischer in kompakten Mannigfaltigkeiten. Arch. Math. 40, 559–568 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lalley, S.P.: Distribution of periodic orbits of symbolic and axiom A flows. Adv. Appl. Math. 8, 154–193 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ledrappier, F.: Structure au bord des variétés à courbure négative. Séminaire de théorie spectrale et géométrie 13, 97–122 (1994)

    Article  MATH  Google Scholar 

  25. Link, G.: Hausdorff dimension of limit sets of discrete subgroups of higher rank lie groups. Geom. Funct. Anal. GAFA 14(2), 400–432 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marden, A.: Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, from:” analytical and geometric aspects of hyperbolic space (coventry, durham, 1984). Lond. Math. Soc. Lect. Note Ser. 111, 113–253 (1984)

    MathSciNet  Google Scholar 

  27. Margulis, G.A.: Applications of ergodic theory to the investigation of manifolds of negative curvature. Funct. Anal. Appl. 3(4), 335–336 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. McMullen, C.T.: Hausdorff dimension and conformal dynamics I: strong convergence of Kleinian groups. J. Differ. Geom. 51(3), 471–515 (1999)

  29. Mess, G.: Lorentz spacetimes of constant curvature. Geom. Dedicata 126(1), 3–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mumford, D.: A remark on Mahler’s compactness theorem. Proc. Am. Math. Soc. 28, 289–294 (1971)

    MathSciNet  MATH  Google Scholar 

  31. Otal, J.-P.: Le spectre marqué des longueurs des surfaces à courbure négative. (The spectrum marked by lengths of surfaces with negative curvature). Ann. Math. (2) 131(1), 151–162 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Parry, W., Pollicott, M.: Zeta functions and closed orbit structure for hyperbolic systems. Asterisque 187(188), 1–268 (1990)

    MATH  Google Scholar 

  33. Sambarino, A.: Quantitative properties of convex representations. Comment. Math. Helv. 89(2), 442–488 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sanders, A.: Entropy, minimal surfaces, and negatively curved manifolds. arXiv preprint arXiv:1404.1105 (2014)

  35. Sambarino, A.: The orbital counting problem for hyperconvex representations. Ann. Inst. Fourier 65(4), 1755–1797 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Šarić, D.: Geodesic currents and teichmüller space. Topology 44(1), 99–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sharp, R.: The Manhattan curve and the correlation of length spectra on hyperbolic surfaces. Math. Z 228(4), 745–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schwartz, R., Sharp, R.: The correlation of length spectra of two hyperbolic surfaces. Commun. Math. Phys. 153(2), 423–430 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thurston, W.P.: Minimal stretch maps between hyperbolic surfaces. arXiv preprint arXiv:math/9801039 (1998)

  40. Thurston, W.P., Milnor, J.W.: The Geometry and Topology of Three-Manifolds. Princeton University, Princeton (1979)

    Google Scholar 

  41. Walters, P.: A variational principle for the pressure of continuous transformations. Am. J. Math. 97(4), 937–971 (1975)

  42. Wolpert, S.: Noncompleteness of the weil-petersson metric for teichmüller space. Pac. J. Math. 61(2), 573–577 (1975)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is a part of my Ph.D. thesis and I am very grateful to Gilles Courtois for his support and advices. I would like to thank Maxime Wolff for his help about Teichmüller space, laminations, and Thurston compactification. I am also grateful to Jean-Marc Schlenker who suggested me the Anti-de Sitter interpretation of my work. Finally I would like to thank the referees for many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Glorieux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glorieux, O. Counting closed geodesics in globally hyperbolic maximal compact AdS 3-manifolds. Geom Dedicata 188, 63–101 (2017). https://doi.org/10.1007/s10711-016-0206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-016-0206-9

Keywords

Mathematics Subject Classification

Navigation