Skip to main content
Log in

Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The complete mitochondrial genome sequences of Porzana fusca and Porzana pusilla were determined. The two avian species share a high degree of homology in terms of mitochondrial genome organization and gene arrangement. Their corresponding mitochondrial genomes are 16,935 and 16,978 bp and consist of 37 genes and a control region. Their PCGs were both 11,365 bp long and have similar structure. Their tRNA gene sequences could be folded into canonical cloverleaf secondary structure, except for tRNASer (AGY), which lost its “DHU” arm. Based on the concatenated nucleotide sequences of the complete mitochondrial DNA genes of 16 Rallidae species, reconstruction of phylogenetic trees and analysis of the molecular clock of P. fusca and P. pusilla indicated that these species from a sister group, which in turn are sister group to Rallina eurizonoides. The genus Gallirallus is a sister group to genus Lewinia, and these groups in turn are sister groups to genus Porphyrio. Moreover, molecular clock analyses suggested that the basal divergence of Rallidae could be traced back to 40.47 (41.46‒39.45) million years ago (Mya), and the divergence of Porzana occurred approximately 5.80 (15.16‒0.79) Mya.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anmarkrud JA, Lifjeld JT (2017) Complete mitochondrial genomes of eleven extinct or possibly extinct bird species. Mol Ecol Resour 17:334–341

    Article  CAS  PubMed  Google Scholar 

  • Archer M, Arena DA, Bassarova M, Black BECK, R.M., Boles K, Brewer WE, Cooke P, Crosby BN, K. and Gillespie A (2006) Current status of species-level representation in faunas from selected fossil localities in the Riversleigh World Heritage Area, northwestern Queensland. Alcheringa 30:1–17

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution. J Wildl Manage 58:798

    Google Scholar 

  • Brown JW, Payne RB, Mindell DP (2007) Nuclear DNA does not reconcile ‘rocks’ and ‘clocks’ in Neoaves: a comment on Ericson et al. Biol Lett 3:257–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheek R, Campbell KK, Dickerman R, Wijdeven B, Winker K, 2016. Mitochondrial DNA suggests recent origins in two coastal avian subspecies in northwestern North America. PeerJ Prepr 4:e1985v1

    Google Scholar 

  • De Pietri VL, Mayr G (2014) Reappraisal of early Miocene rails (Aves, Rallidae) from central France: diversity and character evolution. J Zool Syst Evol Res 52:312–322

    Article  Google Scholar 

  • Delport W, Ferguson JWH, Bloomer P (2002) Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes). J Mol Evol 54:794–806

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:1

    Article  Google Scholar 

  • Fain MG, Krajewski C, Houde P (2007) Phylogeny of “core Gruiformes”(Aves: Grues) and resolution of the Limpkin–Sungrebe problem. Mol Phyloge Evol 43:515–529

    Article  CAS  Google Scholar 

  • Fourcade Y, Richardson DS, Keišs O, Budka M, Green RE, Fokin S, Secondi J (2016) Corncrake conservation genetics at a European scale: the impact of biogeographical and anthropological processes. Biol Conserv 198:210–219

    Article  Google Scholar 

  • García-R JC, Gibb GC, Trewick SA, 2014. Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae). PloS One. 9:e109635

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong J, Zhao R, Huang Q, Sun X, Huang L, Jing M (2017) Two mitogenomes in Gruiformes (Amaurornis akool / A. phoenicurus) and the phylogenetic placement of Rallidae. Genes Genom 39:987–995

    Article  CAS  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  CAS  PubMed  Google Scholar 

  • Härlid A, Janke A, Arnason U (1998) The complete mitochondrial genome of Rhea americana and early avian divergences. JMol Evol 46:669–679

    Article  Google Scholar 

  • He K, Ren T, Zhu S, Zhao A (2016) The complete mitochondrial genome of Fulica atra (Avian, Gruiformes, Rallidae). Mitochondr DNA 27:3161–3162

    CAS  Google Scholar 

  • Houde P (2009) Cranes, rails, and allies (Gruiformes). Oxford University Press, Oxford

    Google Scholar 

  • Huang, Z, Ke, D, Ke, W (2014) The structure of complete mitochondrial genome and it’s comparison between Bambusicola thoracica and B. fytchii. J Jinggangshan Univ 35:100–106

    CAS  Google Scholar 

  • Huang Z, Tu F, Murphy RW (2016) Analysis of the complete mitogenome of Oriental turtle dove (Streptopelia orientalis) and implications for species divergence. Biochem Syst Ecol 65:209–213

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Kirchman JJ (2012) Speciation of flightless rails on islands: a DNA-based phylogeny of the typical rails of the Pacific. Auk 129:56–69

    Article  Google Scholar 

  • Krajewski C, Sipiorski JT, Anderson FE (2010) Complete mitochondrial genome sequences and the phylogeny of cranes (Gruiformes: Gruidae). Auk 127:440–452

    Article  Google Scholar 

  • Lee H-C, Wei Y-H (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37:822–834

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhou L, Li B, Zhang L (2014) The complete mitochondrial genome of Aix galericulata and Tadorna ferruginea: Bearings on their phylogenetic position in the Anseriformes. PloS One 9:e109701

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu CZ, Wei GH, Hu JH, Liu XY (2016) Complete mitochondrial genome of the Swan Goose (Anser cygnoides L.) and its phylogenetic analysis. Mitochondr DNA 27:2427–2428

    CAS  Google Scholar 

  • Livezey BC (1998) A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philos Trans R Soc Lond B Biol Sci 353:2077–2151

    Article  Google Scholar 

  • Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc 149:1–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan-Richards M, Trewick SA, Bartosch-Härlid A, Kardailsky O, Phillips MJ, McLenachan PA, Penny D (2008) Bird evolution: testing the Metaves clade with six new mitochondrial genomes. BMC Evol Biol 8:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen JM, Ho SY (2016) Mitochondrial rate variation among lineages of passerine birds. J Avian Biol 47:690–696

    Article  Google Scholar 

  • Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  • Olson SL (1973) A classification of the Rallidae. Wilson Bull 85:381–416

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573

    Article  CAS  PubMed  Google Scholar 

  • Randi E, Lucchini V (1998) Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J Mol Evol 47:449–462

    Article  CAS  PubMed  Google Scholar 

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Liang S, Zhao A, He K (2016) Analysis of the complete mitochondrial genome of the Zhedong White goose and characterization of NUMTs: reveal domestication history of goose in China and Euro. Gene 577:75–81

    Article  CAS  PubMed  Google Scholar 

  • Ripley SD, Beehler BM (1985) Rails of the world: a compilation of new information, 1975–1983 (Aves: Rallidae). Smithsonian Libraries, I–IV, 417

  • Roques S, Godoy JA, Negro JJ, Hiraldo F (2004) Organization and variation of the mitochondrial control region in two vulture species, Gypaetus barbatus and Neophron percnopterus. J Hered 95:332–337

    Article  CAS  PubMed  Google Scholar 

  • Ruan L, Wang Y, Hu J, Ouyang Y (2012) Polyphyletic origin of the genus Amaurornis inferred from molecular phylogenetic analysis of rails. Biochem Genet 50:959–966

    Article  CAS  PubMed  Google Scholar 

  • Steadman DW (2000) Rails: a guide to the rails, crakes, gallinules and coots of the world. Auk 117:840–841

    Google Scholar 

  • Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods) Version 4.0b10. Sunderland, MA, Sinauer Associates

  • Taanman J-W (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita S, Yukuhiro K, Komoto N (2011) The mitochondrial genome of a stick insect Extatosoma tiaratum (Phasmatodea) and the phylogeny of polyneopteran insects. J Insect Biotechnol Sericol 80:79–88

    Google Scholar 

  • Wan QH, Wu H, Fujihara T, Fang SG (2004) Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176

    Article  CAS  PubMed  Google Scholar 

  • Wang Q (2006) Fauna Sinica: Aves Gruiformes. Science Press, vol 5, p 96–100, 102–107

  • Wang N, Liang B (2016) Complete mitochondrial genome of a sunbird, Aethopyga gouldiae (Aves: Passeriformes), the first representative of Nectariniidae. Mitochondr DNA 27:2356–2358

    CAS  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  CAS  PubMed  Google Scholar 

  • Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang H, Gao J, Yu B, Zhou H, Cai D, Zhang Y, Chen X, Wang X, Hofreiter M, Zhao X (2014) Early Holocene chicken domestication in northern China. Proc Natl Acad Sci 111:17564–17569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Wu X, Yan P, Su X, Yang B (2010) Complete mitochondrial genome of Otis tarda (Gruiformes: Otididae) and phylogeny of Gruiformes inferred from mitochondrial DNA sequences. Mol Biol Rep 37:3057–3066

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang L, Gowda V, Wang M, Li X, Kan X (2012) The mitochondrial genome of the Cinnamon Bittern, Ixobrychus cinnamomeus (Pelecaniformes: Ardeidae): sequence, structure and phylogenetic analysis. Mol Biol Rep 39:8315–8326

    Article  CAS  PubMed  Google Scholar 

  • Zou Y (2015) Analysis on the complete mitochondrial genome sequences of six avian species. Doctoral dissertation, Ludong University

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (NSFC no. 30960052 and no. 31260510) and Water resources Department of Jiangxi Province Science and Technological Project (no. KT201537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzhang Ruan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3594 KB)

Supplementary material 2 (JPG 77 KB)

Appendices

Appendix 1

See Table 7.

Table 7 Sequence of mitochondrial control region of Porzana fusca and Porzana pusilla

Appendix 2

See Table 8.

Table 8 Predicted initiation and termination of 13 mitochondrial PCGs in 16 Rallidae species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Han, Y., Zhu, C. et al. Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species. Genetica 145, 559–573 (2017). https://doi.org/10.1007/s10709-017-9982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-017-9982-x

Keywords

Navigation